Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T00:31:07.305Z Has data issue: false hasContentIssue false

Removal of triclosan by CTAB-modified zeolite-rich tuff from aqueous solutions

Published online by Cambridge University Press:  28 October 2020

Sonia Alvarez-García*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico s/n, Colonia Agrícola Bellavista, C.P. 52149, Metepec, México. e-mail: [email protected]
Guadalupe Macedo-Miranda
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico s/n, Colonia Agrícola Bellavista, C.P. 52149, Metepec, México. e-mail: [email protected]
Sonia Martínez-Gallegos
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico s/n, Colonia Agrícola Bellavista, C.P. 52149, Metepec, México. e-mail: [email protected]
Eduardo Ordoñez-Regíl
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, C.P. 52750, Ocoyoacac México.
Jessica López-Castillo
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico s/n, Colonia Agrícola Bellavista, C.P. 52149, Metepec, México. e-mail: [email protected]
Enrique Aguirre-Miranda
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico s/n, Colonia Agrícola Bellavista, C.P. 52149, Metepec, México. e-mail: [email protected]
Get access

Abstract

Triclosan (TCS) adsorption behavior by a modified zeolite with Cetyl Trimethyl Ammonium Bromide (CTAB) was evaluated factoring in pH, contact time, and TCS initial concentration in a batch system. Natural clinoptilolite-type zeolite from Sonora, Mexico was conditioned with a sodium chloride solution, and, subsequently, modified with CTAB. All the zeolites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS), and the Zero Point Charge (pHZPC). It was found that the morphological and structural properties of natural zeolite were not affected after treatment with cationic surfactant. Furthermore, adsorption process efficiency was enhanced by the presence of CTAB, obtaining TCS maximum adsorption capacity at an optimal pH of 9.0. In this context, the positively charged surface of the modified zeolite and the anionic triclosan species present were decisive. Kinetics data were well adjusted to a pseudo-second order model with a TCS adsorption capacity of 1.430 ± 0.051 mg g-1 at an equilibrium time of 18 h. Isotherm results were best adjusted to the Langmuir model with a qmax = 2.027 mg g-1 using an initial Co concentration of 18.0 mg L-1, and reaching an equilibrium Ce concentration of 0.559 mg L-1. The mechanism for the adsorption of TCS by CTAB-modified zeolite was proposed to be electrostatic attractions between the group of partial positive charge of CTAB and the anionic species of triclosan. Consequently, CTAB-modified zeolites could be used as effective adsorbents for triclosan removal.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., and Yu, G., Emerg. Contam. 1, 14 (2015).CrossRefGoogle Scholar
Fu, J., Tan, Y. X. R., Gong, Z., and Bae, S., Ecotoxicol. Environ. Saf. 189, 110039 (2020).CrossRefGoogle Scholar
Nassan, F. L., Environ. Res. 177, 108633 (2019).CrossRefGoogle Scholar
Behera, S. K., Oh, S. Y., and Park, H. S., J. Hazard. Mater. 179, 684 (2010).CrossRefGoogle Scholar
Lei, C., Hu, Y., and He, M., Chem. Eng. J. 219, 361 (2013).CrossRefGoogle Scholar
Alvarez-García, S., Ramírez-García, J. J., Granados-Correa, F., and Sánchez-Meza, J. C., Water, Air, Soil Pollut. 229, 347 (2018).CrossRefGoogle Scholar
Barragán P, P.., Macedo M, M. G.., and Olguín, M. T., J. Environ. Sci. (China) 52, 39 (2017).CrossRefGoogle Scholar
Ruiz-Serrano, D., Flores-Acosta, M., Conde-Barajas, E., Ramírez-Rosales, D., Yáñez-Limón, J. M., and Ramírez-Bon, R., J. Mol. Struct. 980, 149 (2010).CrossRefGoogle Scholar
Dávila-Estrada, M., Ramírez-García, J. J., Solache-Ríos, M. J., and Gallegos-Pérez, J. L., Water. Air. Soil Pollut. 229, 123 (2018).CrossRefGoogle Scholar
Dávila-Estrada, M., Ramírez-García, J. J., Díaz-Nava, M. C., and Solache-Ríos, M., Water. Air. Soil Pollut. 227, 157 (2016).CrossRefGoogle Scholar
Alvarez-García, S., Ramírez-García, J. J., Granados-Correa, F., and Sánchez-Meza, J. C., Sep. Sci. Technol. 55, 619 (2020).CrossRefGoogle Scholar
Fukahori, S., Fujiwara, T., Ito, R., and Funamizu, N., Desalination 275, 237 (2011).CrossRefGoogle Scholar
González-Ortiz, A., Ramírez-García, J. J., and Solache-Ríos, M. J., Desalin. Water Treat. 127, 243 (2018).CrossRefGoogle Scholar
Macedo-Miranda, M. G., and Olguín, M. T., J Incl Phenom Macrocycl Chem. 59, 131 (2007)CrossRefGoogle Scholar
Peña-Álvarez, A., and Castillo-Alanís, A., TIP.18, 29 (2015).CrossRefGoogle Scholar