Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:16:39.972Z Has data issue: false hasContentIssue false

Regenerative Engineering-The Convergence Quest

Published online by Cambridge University Press:  14 January 2018

Cato Laurencin*
Affiliation:
Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Farmington, Connecticut, United States of America Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, United States of America
Naveen Nagiah
Affiliation:
Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
*
Get access

Abstract

We define Regenerative Engineering as a Convergence of Advanced Materials Science, Stem Cell Science, Physics, Developmental Biology, and Clinical Translation. We believe that an “un-siloed’ technology approach will be important in the future to realize grand challenges such as limb and organ regeneration. We also believe that biomaterials will play a key role in achieving overall translational goals. Through convergence of a number of technologies, with advanced materials science playing an important role, we believe the prospect of engaging future grand challenges is possible. Regenerative Engineering as a field is particularly suited for solving clinical problems that are relevant today. The paradigms utilized can be applied to the regeneration of tissue in the shoulder where tendon and muscle currently have low levels of regenerative capability, and the consequences, especially in alternative surgical solutions for massive tendon and muscle loss at the shoulder have demonstrated significant morbidity. Polymer, polymer-cell, and polymer biological factor, and polymer-physical systems can be utilized to propose a range of solutions to shoulder tissue regeneration. The approaches, possibilities, limitations and future strategies, allow for a variety of clinical solutions in musculoskeletal disease treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Linaker, C.H. and Walker-Bone, D.K., Best Pract. Res. Clin. Rheumatol. 29, 405 (2015).CrossRefGoogle Scholar
Allander, E., Scand. J Rheumatol. 3, 145 (1974).Google Scholar
Chard, M.D, Hazelman, R and Hazelman, B.L., Arth. Rheum. 34, 766 (1991).CrossRefGoogle Scholar
Andersson, H.I., Ejlertsson, G., Leden, I. and Rosenberg, C., Clin. J Pain. 9, 174 (1993)Google Scholar
Walker-Bone, K., Reading, I. and Coggon, D., Pain. 109, 45 (2004).Google Scholar
Peach, M. S., Ramos, D. M., James, R., Morozowich, N. L., Mazzocca, A. D., Doty, S. B., Allcock, H. R., Kumbar, S. G. and Laurencin, C. T., PLoS ONE 12 (4): e0174789.CrossRefGoogle Scholar
Sher, J.S., Uribe, J.W. and Posada, A, J. Bone. Joint. Surg. Am. 77, 10 (1995).CrossRefGoogle Scholar
Yamaguchi, K., Ditsios, K. and Middleton, W.D., J. Bone. Joint. Surg. Am. 88, 1699 (2006).CrossRefGoogle Scholar
Pedowitz, R.A., Yamaguchi, K., Ahmad, C.S., Burks, R.T., Flatow, E.L., Green, A., Iannotti, J.P, Miller, B.S., Tashjian, R.Z., Watters, W.C., Weber, K., Turkelson, C.M., Wies, J.L and McGowan, R., J. Am. Acad. Orthop. Surg. 19, 368 (2011).Google Scholar
Lipner, J., Shen, H., Cavinatto, L, Liu, W, Havlioglu, N., Xia, Y., Galatz, L. M., and Thomopoulos, S., Tissue. Engg. A. 21, 21 (2015).Google Scholar
Park, Y., Kwon, D, Lee, S, Stem. Cell. Trans. Med 4, 1344 (2015).Google Scholar
Prasad, N., Odumal, A., Elias, F. and Jenkins, T, Acta. Orthop. Belg. 71, 662(2005).Google Scholar
Goutallier, D., Postel, J.M., Gleyze, P, Leguilloux, P. and Van, D.S., J. Shoulder. Elbow. Surg. 12, 550 (2003).CrossRefGoogle Scholar
Goutallier, D., Postel, J.M., Bernageau, J., Lavau, L. and Voisin, M.C., Rev Rhum. Engl. Ed. 62, 415(1995).Google Scholar
Clement, N. D., Nie, Y. X., and McBirnie, Julie M, Sports Med Arthrosc Rehabil Ther Technol. 4, 48 (2012).Google Scholar
Rothrauff, B., Pauyo, T., Debski, R.E. and Rodosky, M. W., TISSUE ENGINEERING B. 23, 318 (2017).Google Scholar
Zhao, S, Xie, X, Pan, G., Shen, P, Zhao, J and Cui, W, J. Surgical Research. 193, 33 (2015).CrossRefGoogle Scholar
Adams, J.E., Zobitz, M.E., Reach, J.S. Jr., Anand, K.N. Steinmann, S.P., Arthroscopy. 22, 700 (2006).Google Scholar
Tashjian, R.Z., J Am, . Acad. Orthop. Surg. 19, 380 (2011).CrossRefGoogle Scholar
Chainani, A, and Little, D., Tech. Orthop. 31, 91 (2016).Google Scholar
Cho, C.H., Lee, S.M. and Lee, Y.K., Clin. Orthop. Surg. 6, 329 (2014).Google Scholar
Ricchetti, E.T., Aurora, A., Iannotti, J.P., J. Shoulder. Elbow. Surg. 21, 251 (2012).CrossRefGoogle Scholar
Genin, G.M., Kent, A., Birman, V., Wopenka, B., Pasteris, J.D., Marquez, P.J. and Thomopoulos, S., Biophys. J. 97, 976 (2009).CrossRefGoogle Scholar
Benjamin, M., Evans, E.J. and Copp, L., J. Anat. 149, 89 (1986).Google Scholar
Galatz, L., Rothermich, S., VanderPloeg, K., Petersen, B., Sandell, L. and Thomopoulos, S., J. Orthop. Res. 25, 1621 (2007).Google Scholar
Zhang, X., Bogdanowicz, D., Erisken, C., Lee, N.M. and Lu, H.H., J. Shoulder Elb. Surg. 21, 266 (2012).Google Scholar
Hee, C.K., Dines, J.S., Dines, D.M., Roden, C.M., Wisner-Lynch, L.A., Turner, A.S., McGilvray, K.C., Lyons, A.S., Puttlitz, C.M. and Santoni, B.G., Am. J. Sports Med. 39, 1630 (2011).CrossRefGoogle Scholar
Funakoshi, T., Majima, T., Iwasaki, N., Suenaga, N., Sawaguchi, N., Shimode, K., Minami, A., Harada, K. and Nishimura, S., Am. J. Sports Med. 33, 1193 (2005).CrossRefGoogle Scholar
Musson, D.S., Naot, D., Chhana, A., Matthews, B.G., McIntosh, J.D., Lin, S.T., Choi, A.J., Callon, K.E., Dunbar, P.R., Lesage, S., Coleman, B. and Cornish, J., Tissue Eng. Part A 21, 1539 (2015).CrossRefGoogle Scholar
Snyder, S., Bond, J. and Dopirak, R., Int. J. Shoulder Surg. 1, 7 (2007).Google Scholar
Funakoshi, T., Majima, T., Iwasaki, N, Suenaga, N, Sawaguchi, N, Shimode, K., Minami, A, Harada, K. and Nishimura, S.. Am. J. Sports. Med. 33, 1193 (2005).CrossRefGoogle Scholar
Hee, C.K., Dines, J.S, Dines, D.M. and Santoni, B.G, Am. J. Sports. Med. 39, 1630 (2011).Google Scholar
Kovacevic, D., Fox, A.J., Bedi, A., Ying, L., Deng, X.H., Warren, R.F. and Rodeo, S.A., Am. J. Sports Med. 39 ,811 (2011).CrossRefGoogle Scholar
Zhao, S., Peng, L., Xie, G., Li, D., Zhao, J., Ning, C., Am.. J. Sports Med. 42, 1920 (2014).Google Scholar
Thangarajah, T., Sanghani-Kerai, A., Henshaw, F., Lambert, S.M., Pendegrass, C. J. and Blunn, G.W., Am. J. Sports Med.DOI: 10.1177/0363546517727512.Google Scholar
Zhao, S., Su, W., Shah, V., Hobson, D., Yildirimer, L., Yeung, K.W.K., Zhao, J., Cui, W. and Zhao, X., Colloids Surf B Biointerfaces, 157, 407 (2017).CrossRefGoogle Scholar
Zheng, Z., Ran, J., Chen, W., Hu, Y., Zhu, T., Chen, X., Yin, Z., Heng, B. C., Feng, G., Le, H., Tang, Chenqi Jiayun Huang, b.i. Chenb,i, Y. b,i, Y., Zhou, Y., Dominique, P., Shen, W. and Ouyang, H., Acta. Biomaterialia. 51, 317 (2017).Google Scholar
Yang, G., Lin, H, Rothrauff, B. B., Yu, S. and Tuan, R. S., Acta. Biomaterialia. 35, 68 (2016).CrossRefGoogle Scholar
Lee, K.W., Lee, J.S., Kim, Y.S., Shim, Y.B., Jang, J.W. and Lee, K.I., J. Biomed. Mater. Res. B Appl. Biomater. (2016), http://dx.doi.org/10.1002/jbm.b.33716.Google Scholar
Tokunaga, T, Ide, J. and Arimura, H., Arthroscopy 31, 1482 (2015).CrossRefGoogle Scholar
Grier, W.K., Moy, A.S. and Harley, B.A.C., Euro. Cells Mat.33, 227 (2017).Google Scholar