Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T02:36:38.620Z Has data issue: false hasContentIssue false

Reduced Graphene Oxide Using an Environmentally Friendly Banana Extracts

Published online by Cambridge University Press:  25 June 2019

Lattapol Buasuwan
Affiliation:
Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
Vitchayes Niyomnaitham
Affiliation:
Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
Aniwat Tandaechanurat*
Affiliation:
Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
*
*Corresponding author E-mail address: [email protected]
Get access

Abstract

One of the most promising methods to produce graphene in large scale is the use of chemical exfoliation together with chemical reduction to achieve reduced graphene oxide. Replacing conventional reducing agents, such as NaBH4 and hydrazine, with cheap, widely available, safe, environmentally friendly, and easy-to-prepare reducing agents is a key to large-scale commercial production of reduced graphene oxide. In this work, we investigate the effectiveness of utilizing fruit extracts derived from banana peel and juice to reduce graphene oxide. After the reduction, the oxygen-containing functional groups in graphene oxide are effectively removed, and the sp2 hybridized carbon-carbon bonding networks are restored, as evidenced by the characterization using x-ray photoelectron spectroscopy and Raman spectroscopy. Our banana extracts would offer a promising pathway for realizing cheap, safe, and environmentally friendly reducing agents for the upscale production of reduced graphene oxide.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

REFERENCES

Gao, L., Chao, L., Hou, M., Liang, J., Chen, Y., Yu, H. D., and Huang, W., npj Flex. Electron. 3, 4 (2019).CrossRefGoogle Scholar
Alonso, E. T., Rodrigues, D. P., Khetani, M., Shin, D. W., De Sanctis, A., Joulie, H., de Schrijver, I., Baldycheva, A., Alves, H., Neves, A. I. S., Russo, S., and Craciun, M. F., npj Flex. Electron. 2, 25 (2018).CrossRefGoogle Scholar
Bihar, E., Wustoni, S., Pappa, A. M., Salama, K. N., Baran, D., and Inal, S., npj Flex. Electron. 2, 30 (2018).CrossRefGoogle Scholar
Yang, K., Yuan, S., Huan, Y., Wang, J., Tu, L., Xu, J., Zou, Z., Zhan, Y., Zheng, L., and Seoane, F., npj Flex. Electron. 2, 20 (2018).CrossRefGoogle Scholar
Naghdi, S., Rhee, K. Y., Hui, D., and Park, S. J., Coatings 8, 278 (2018).CrossRefGoogle Scholar
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J. R., Adv. Mater. 12, 481 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
Saghaei, J., Fallahzadeh, A., and Saghaei, T., Org. Electron. 24, 188 (2015).CrossRefGoogle Scholar
Yu, L. P., Shearer, C., and Shapter, J., Chem. Rev. 116, 13413 (2016).CrossRefGoogle Scholar
Cao, W., Li, J., Chen, H., and Xue, J., J. of Photonics for Energy 4, 040990 (2014).CrossRefGoogle Scholar
Mcshan, D., Ray, P. C., and Yu, H., J. Food Drug Anal. 22, 116 (2014).CrossRefGoogle Scholar
Vinogradov, V. V., Agafonov, A., and Avnir, D., J. Mater. Chem. C 2, 3914 (2014).CrossRefGoogle Scholar
Novoselov, K. S., Nature 490, 192 (2012).CrossRefGoogle Scholar
Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S. E., McGuire, E. K., Sanchez, B. M., Duesberg, G. S., McEvoy, N., Pennycook, T. J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J. N., Nat. Mater. 13, 624 (2014).CrossRefGoogle Scholar
Yi, M. and Shen, Z., RSC Adv. 6, 72525 (2016).CrossRefGoogle Scholar
Chun, K. C. and Martin, P., Chem. Soc. Rev. 43, 291-312 (2014).Google Scholar
Aunkor, M. T. H., Mahbubul, I. M., Saidur, R., and Metselaar, H. S. C., RSC Adv. 6, 27807 (2016).CrossRefGoogle Scholar
Suresh, D., Nagabhushana, H., and Sharma, S., Mater. Lett. 142, 4 (2015).CrossRefGoogle Scholar
Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., and Lee, J. H., Carbon 50, 914 (2012).CrossRefGoogle Scholar
Gurunathan, S., Han, J. W., Park, J. H., Eppakayala, V., and Kim, J. H., Int. J. Nanomed. 9, 363 (2014).CrossRefGoogle Scholar
Jin, X., Li, N., Weng, X., Li, C., and Chen, Z., Chemosphere 208, 417 (2018).CrossRefGoogle Scholar
Montelongo, R. G., Lobo, M. G., and González, M., Food Chem. 119, 1030 (2010).CrossRefGoogle Scholar
Wolfe, K., Wu, X., and Liu, R. H., J. Agric. Food Chem. 51, 609 (2003).CrossRefGoogle Scholar
Brewer, M. S., Compr. Rev. FoodSci. F. 10, 221 (2011).CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations: Banana Cultivars (2017). Available at: http://www.fao.org/economic/est/est-commodities/bananas/bananafacts/en/#.XNBvxTD7SUk (accessed 1 May 2019).Google Scholar
Emaga, T. H., Robert, C., Ronkart, S. N., Wathelet, B., and Paquot, iM., Bioresour. Technol. 99, 4346 (2007).CrossRefGoogle Scholar
Achak, M., Hafidi, A., Ouazzani, N., Sayadi, S., and Mandi, L., J. Hazard. Mater. 166, 117 (2009).CrossRefGoogle Scholar
Lotfabad, E. M., Ding, J., Cui, K., Kohandehghan, A., Kalisvaart, W. P., Hazelton, M., and Mitlin, D. ACS Nano 8, 7115 (2014).CrossRefGoogle Scholar
Hossain, D., Khan, M. R., and Uddin, Z., J. Polym. Environ. 25, 1219 (2017).CrossRefGoogle Scholar
Ibrahim, H. M. M., J. Radiat. Res. Appl. Sci. 8, 265 (2015).CrossRefGoogle Scholar
CHEE, S. H., B. Eng. Thesis, University of Malaysia, Pahang, 2015.Google Scholar
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M., ACS Nano 4, 4806 (2010).CrossRefGoogle Scholar
Ferna’ndez-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Soli’s- Ferna’ndez, P., Marti’nez-Alonso, A., and Tasco’n, J. M. D., J. Phys. Chem. C 114, 6426 (2010).CrossRefGoogle Scholar
Thermo Scientific XPS: Carbon. Available at: https://xpssimplified.com/elements/carbon.php#graphite (accessed 1 May 2019).Google Scholar
Zhang, W., He, W., and Jing, X., J. Phys. Chem. B 114, 10368 (2010).CrossRefGoogle Scholar
Wu, J. B., Lin, M. L., Cong, X., Liu, H. N., and Tan, P. H., Chem. Soc. Rev. 47, 1822 (2018).CrossRefGoogle Scholar
Ramesha, G. K. and Sampath, S., J. Phys. Chem. C 113, 7985 (2009).CrossRefGoogle Scholar
Ferrari, A. C., Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
Ferrari, A. C. and Basko, D. M., Nat. Nanotechnol. 8, 235 (2013).CrossRefGoogle Scholar
Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z., McGovern, I. T., Duesberg, G. S., and Coleman, J. N., J. Am. Chem. Soc. 131, 3611 (2009).CrossRefGoogle Scholar