Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T02:27:26.310Z Has data issue: false hasContentIssue false

Production and Characterization of Electroactive Nickel Oxides Grown on Nickel Foam by Anodic Oxidation in KOH Melts for Supercapacitor Applications

Published online by Cambridge University Press:  11 May 2017

N. Tokmak*
Affiliation:
Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul-Turkey
M. Urgen
Affiliation:
Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul-Turkey
*
Get access

Abstract

The role of experimental parameters on direct oxidation of nickel foams with anodic oxidation (anodization) in molten KOH and their contribution to capacitance properties are investigated. Temperature of the melt exhibited an important role on the nature of compounds formed by anodic oxidation. On the samples anodized at 280 and 300 °C stoichiometric NiO is formed. Samples anodized in the temperature range of 150-200 °C gave very high maximum currents in CV measurements indicating the formation of electroactive nickel compounds on them. The nature of these compounds is determined as alpha nickel oxy-hydroxide (a-Ni(OH)2) by micro Raman, XRD and FT-IR measurements. Other property that determines the capacity of these electrodes is the morphology of the electroactive layer, which is controlled mainly by the duration of the treatment. 30 minutes of anodic oxidation time is determined as the optimum value. Areal capacity of the samples anodically oxidized at 200 °C for 30 min using 0.8 V cell voltage are determined as 2.73 F.cm-2 and 1.58 F.cm-2 for 1 mA.cm-2 and 20 mA.cm-2 discharge current densities respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, J., Luo, F., Zhao, Q., Li, Z., Yuan, H. and Xiao, D., J. Mater. Chem. A, 2(13), 46904697, (2014).Google Scholar
Saghatforoush, L.A., Hasanzadeh, M., Sanati, S. and Mehdizadeh, R., Bull. Korean Chem. Soc., 33(8), 26132618, (2012).CrossRefGoogle Scholar
Haring, P., and Kotz, R., J. Electroanal. Chem., 385(2), 273277, (1995)Google Scholar
Gu, L., Wang, Y., Lu, R., Guan, L., Peng, X., and Sha, J., J. Mater. Chem. A, 2(20), 71617164, (2014).CrossRefGoogle Scholar
Wu, M.S., Huang, Y.A., Jow, J. J., Yang, W. D., Hsieh, C. Y., and M Tsai, H., Int. J. Hydrogen Energy, 33(12), 29212926, (2008).Google Scholar
Wang, K., Li, L., and Zhang, T., Int. J. Electrochem. Sci., 8(5), 62526257, (2013).CrossRefGoogle Scholar
Zhu, Y., Cao, C., Tao, S., Chu, W., Wu, Z. and Li, Y., Sci. Rep., 4, 5787, (2014).CrossRefGoogle Scholar
Ni, S., Lv, X., Ma, J., Yang, X. and Zhang, L., J. Power Sources, 270, 564568, (2014).CrossRefGoogle Scholar
Li, L., Xu, J, Lei, J., Zhang, J., McLarnon, F., Wei, Z. and Pan, F., J. Mater. Chem. A, 3(5), 19531960, (2015).Google Scholar
Kumari, L., and Li, W. Z., Phys. E, 41(7), 12891292, (2009).Google Scholar
Yang, L., Qian, L., Tian, X., Li, J., Dai, J., Guo, Y. and Xiao, D., Chem.– Asian J., 9(6), 15791585, (2014).Google Scholar
Zhang, G., Li, W., Xie, K., Yu, F. and Huang, H., Adv. Funct. Mater., 23(29), 36753681, (2013) .Google Scholar
Jin, M., Zhang, G., Yu, F., Li, W., Lu, W. and Huang, H., Phys. Chem. Chem. Phys, 15(5), 16011605, (2013).Google Scholar
Chen, M. M., Xiong, X. B., Yi, C., Ma, J. and Zeng, X. R., J. Inor. Organomet. Polym. Mater., 25(4), 739746, (2015).Google Scholar
Yin, J. L. and Park, J. Y., Int. J. Hydrogen Energy, 39(29), 1656216568, (2014).Google Scholar
Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R.. Proc. R. Soc. A471: 20140792, (2015).Google Scholar
Linke, W. F., Seidell, A., Vol. 2, 4 th Ed., ACS Pub., 1965, pp. 276.Google Scholar
Srinivasan, V. and Weidner, J. W., J. Electrochem. Soc., 147(3), 880885, (2000).Google Scholar
Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z., J. Electrochem. Soc. 161, B201B206, (2014)Google Scholar
Li, H. B., Yu, M. H., Wang, F. X., Liu, P., Liang, Y., Xiao, J. and Yang, G.W., Nat. Commun., 4, 1894 (2013)Google Scholar
Lo, Y. L. and Hwang, B. J., Langmuir, 14(4), 944950, (1998).Google Scholar
Yeo, B. S. and Bell, A. T., J. Phys. Chem. C, 116(15), 83948400, (2012).CrossRefGoogle Scholar
Fu, G. R., Hu, Z. A., Xie, L. J., Jin, X. Q., Xie, Y. L., Wang, Y. X. and Wu, H. Y., Int. J. Electrochem. Sci, 4(8), 10521062, (2009).CrossRefGoogle Scholar
Xiong, X. H., Wang, Z. X., Guo, H. J. and Li, X. H., Mater. Lett., 138, 5-8, (2015).Google Scholar
Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J, Sildos, I. and Pärs, M.. In Journal of Physics: Conference Series (Vol. 93, No. 1, p. 012039). IOP Publishing, (2007).Google Scholar
Duan, W. J., Lu, S. H., Wu, Z. L. and Wang, Y. S., J. Phy. Chem C, 116(49), 2604326051, (2012).Google Scholar
Chan, S. S. and Wachs, I. E., E, I., J. Catal., 103(1), 224227, (1987).Google Scholar
Acharya, R., Subbaiah, T., Anand, S. and Das, R. P.,Mater. Lett., 57(20), 30893095, (2003).Google Scholar
Feng, L., Zhu, Y., Ding, H. and Ni, C.. J. Power Sources, 267, 430444. (2014).Google Scholar
Miao, Y., Ouyang, L., Zhou, S., Xu, L., Yang, Z., Xiao, M., M. and Ouyang, R., Biosens. Bioelectron., 53, 428439, (2014).Google Scholar
Armutlulu, A., Kim, J. K., Kim, M. et al. Proc.of Transducers&Eurosensors XXVII Conf., 14801483 (2013).Google Scholar
Min, S., Zhao, C., Chen, G., Qian, X., Electrochim. Acta,115, 155164, (2013).Google Scholar
Tang, Z., Tang, C.H., Gong, H., Adv. Funct. Mater, 22, 12721278, (2012).Google Scholar
Xia, X., Tu, J., Zhang, Y., Wang, X., Gu, C., Zhao, X.B., Fan, H.J., ACS Nano, 6, 55315538, (2012).Google Scholar
Tang, C.H., Yin, X., Gong, H., ACS Appl. Mater. Interfaces, 5, 1057410582, (2013).CrossRefGoogle Scholar
Shahrokhian, S., Mohammadi, R., Amini, M.K., Electrochim. Acta, 206, 317327, (2016).Google Scholar