Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T12:00:19.375Z Has data issue: false hasContentIssue false

Preparation and Intercalation of Fluorescein in a Reconstructed Zinc/Aluminum Layer Double Hydroxide (LDH)

Published online by Cambridge University Press:  21 November 2017

Jose F Ramirez-Rodriguez*
Affiliation:
Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Procesos e Hidráulica. Av. San Rafael Atlixco No.186, Col. Vicentina. C.P.09340, Iztapalapa, D.F.México.
Ivan Bustamante-Hernandez
Affiliation:
Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Procesos e Hidráulica. Av. San Rafael Atlixco No.186, Col. Vicentina. C.P.09340, Iztapalapa, D.F.México.
Tomas Viveros-Garcia
Affiliation:
Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Procesos e Hidráulica. Av. San Rafael Atlixco No.186, Col. Vicentina. C.P.09340, Iztapalapa, D.F.México.
*
Get access

Abstract

A Zn/Al LDH with fluorescein intercalated as counterion with fluorescent properties was prepared. Fluorescein was prepared by the reaction between resorcinol and phthalic anhydride using the mixed oxide obtained after the thermal treatment of the LDH as catalyst. The material thus obtained, i.e. fluorescein adsorbed onto the mixed oxide from the calcined LDH, was treated with a mixture of water and pentanol in order to reconstitute the LDH and intercalate the fluorescein in the material. Three mixtures of water/pentanol with volume percent ratios of 100/0, 50/50, 20/80, were used to obtain the LDH with fluorescein intercalated. The best treatment could be determined according to the degree reconstruction and fluorescein intercalated into the LDH.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Charles, W. Y. C., Jin, R. and Mirkin, C. A.: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection., Science, 297, 1536, (2002).Google Scholar
Walkup, G. K., Burdette, S. C., Lippard, S. J. and Tsien, R. Y.:, A New Cell-Permeable Fluorescent Probe for Zn. J. Am. Chem. Soc., 122, 5644, (2000).CrossRefGoogle Scholar
Birks, J. B.: Photophysics of Aromatic Molecules, (Wiley-Interscience, London, 1970), pp 704.Google Scholar
Levitus, M., Schmieder, K., Ricks, H., Shimizu, K. D., Bunz, U. H. F. and Garcia-Garibay, M. A.: Steps to Demarcate the Effects of Chromophore Aggregation and Planarization in Poly(phenyleneethynylene)s. 1. Rotationally Interrupted Conjugation in the Excited States of 1,4-Bis(phenylethynyl)benzene J. Am. Chem. Soc., 123, 4259, (2001)CrossRefGoogle Scholar
Shi, Wenying, Wei, Min, Evans, David G. and Duan, Xue: Tunable photoluminescence properties of fluorescein in a layered double hydroxide matrix and its application in sensors. J.Mater.Chem, 20, 3901, (2010)CrossRefGoogle Scholar
Wypych, F. and Satyanarayana, K. G.: Clay Surfaces: Fundamentals and Applications, (Elsevier, London, UK, 2004), pp 546 Google Scholar
Miyata, S., Anion-Exchange Properties of Hydrotalcite-Like Compounds Clays and Clay Miner., 31, 305, (1983).Google Scholar
Erickson, K.L., Bostrom, T.E., and Frost, R.L.: A study of structural memory effects in synthetic hydrotalcites using environmental SEM Materials Letters, 59(2-3), 226, (2005).Google Scholar
Wang, Liping, Wang, Fan and Xu, Linxiao: Layered double hydroxides based on different cations as catalysts for synthesis of poly(1, 5-pentadiol) carbonate diols Indian Journal of Chemistry, 54A, 607, (2015).Google Scholar
Bezen, Manuela C.I., Breitkopf, Cornelia, Lercher, Johannes A.: On the acid–base properties of Zn–Mg–Al mixed oxides. Appl. Cat. A 399, 93, (2011)CrossRefGoogle Scholar
Hyeon Lee, Jong, Jung, Duk-Young, Kim, Eunchul, and Ahn, Tae Kyu: Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces. DaltonTrans., 43, 8543, (2014)Google Scholar
Kooli, E, Depege, I C: Rehydration of Zn-Al layered double hydroxides Clays and Clay Miner. 45, 9298, (1997)CrossRefGoogle Scholar
Adachi-Pagano, Mariko, Forano, Claude and Besse, Jean-Pierre: Delamination of layered double hydroxides by use of surfactants. Chem. Commun., 91, (2000)Google Scholar
Cavani, F., Trifiro, F., and Vaccari, A: Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 11, 173, (1991)CrossRefGoogle Scholar
Lili Wang, A. Roitberg, C. Meuse, A.K. Gaigalas, : Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochimica Acta Part A 57, 1781, (2001)CrossRefGoogle Scholar
Lozano, Rafael, Rossi, Carlos and Matessanz, Emilio: Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain) American Mineralogist, 97, 513, (2012)Google Scholar