Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T11:22:09.607Z Has data issue: false hasContentIssue false

Picosecond Electronic and Structural Dynamics in Photo-excited Monolayer MoSe2

Published online by Cambridge University Press:  05 March 2018

Lindsay Bassman*
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089 Department of Physics, University of Southern California, Los Angeles, CA90089
Aravind Krishnamoorthy
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089
Aiichiro Nakano
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089 Department of Physics, University of Southern California, Los Angeles, CA90089 Department of Computer Science, University of Southern California, Los Angeles, CA90089 Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA90089 Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
Rajiv K. Kalia
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089 Department of Physics, University of Southern California, Los Angeles, CA90089 Department of Computer Science, University of Southern California, Los Angeles, CA90089 Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA90089
Hiroyuki Kumazoe
Affiliation:
Department of Physics, Kumamoto University, Kumamoto860-8555, Japan
Masaaki Misawa
Affiliation:
Department of Physics, Kumamoto University, Kumamoto860-8555, Japan
Fuyuki Shimojo
Affiliation:
Department of Physics, Kumamoto University, Kumamoto860-8555, Japan
Priya Vashishta
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089 Department of Physics, University of Southern California, Los Angeles, CA90089 Department of Computer Science, University of Southern California, Los Angeles, CA90089 Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA90089
*
Get access

Abstract

Monolayers of semiconducting transitional metal dichalcogenides (TMDC) are emerging as strong candidate materials for next generation electronic and optoelectronic devices, with applications in field-effect transistors, valleytronics, and photovoltaics. Prior studies have demonstrated strong light-matter interactions in these materials, suggesting optical control of material properties as a promising route for their functionalization. However, the electronic and structural dynamics in response to electronic excitation have not yet been fully elucidated. In this work, we use non-adiabatic quantum molecular dynamics simulations based on time-dependent density functional theory to study lattice dynamics of a model TMDC monolayer of MoSe2 after electronic excitation. The simulation results show rapid, sub-picosecond lattice response, as well as finite-size effects. Understanding the sub-picosecond atomic dynamics is important for the realization of optical control of the material properties of monolayer TMDCs, which is a hopeful, straightforward tactic for functionalizing these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

McDonnell, S. J. and Wallace, R. M., Thin Solid Films 616, 482501 (2016).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J. and Heinz, T. F., Physical review letters 105(13), 136805 (2010).CrossRefGoogle Scholar
Mak, K. F. and Shan, J., Nature Photonics 10(4), 216226 (2016).CrossRefGoogle Scholar
Cao, L., MRS Bulletin 40(7), 592599 (2015).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G. and Wang, F., Nano letters 10(4), 12711275 (2010).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, i. V. and Kis, A., Nature nanotechnology 6(3), 147150 (2011).CrossRefGoogle Scholar
Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S. and Geim, A., Proceedings of the National Academy of Sciences of the United States of America 102(30), 1045110453 (2005).CrossRefGoogle Scholar
Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q. and Zhang, H., Small 8(5), 682686 (2012).CrossRefGoogle Scholar
Late, D. J., Liu, B., Matte, H., Rao, C. and Dravid, V. P., Advanced Functional Materials 22(9), 18941905 (2012).CrossRefGoogle Scholar
Britnell, L., Ribeiro, R., Eckmann, A., Jalil, R., Belle, B., Mishchenko, A., Kim, Y.-J., Gorbachev, R., Georgiou, T. and Morozov, S., Science 340 (6138), 1311-1314 (2013).CrossRefGoogle Scholar
Bernardi, M., Palummo, M. and Grossman, J. C., Nano letters 13(8), 36643670 (2013).CrossRefGoogle Scholar
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D. C., Fujita, T., Chen, M., Asefa, T., Shenoy, V. B. and Eda, G., Nature materials 12(9), 850855 (2013).CrossRefGoogle Scholar
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M. and Chhowalla, M., Acs Nano 6(8), 73117317 (2012).CrossRefGoogle Scholar
Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. and Suenaga, K., Nature nanotechnology 9(5), 391396 (2014).CrossRefGoogle Scholar
Duerloo, K.-A. N., Li, Y. and Reed, E. J., Nature communications 5 (2014).CrossRefGoogle Scholar
Huang, C., Wu, S., Sanchez, A. M., Peters, J. J., Beanland, R., Ross, J. S., Rivera, P., Yao, W., Cobden, D. H. and Xu, X., Nature materials 13(12), 10961101 (2014).CrossRefGoogle Scholar
Chakraborty, B., Bera, A., Muthu, D., Bhowmick, S., Waghmare, U. V. and Sood, A., Physical Review B 85(16), 161403 (2012).CrossRefGoogle Scholar
Larentis, S., Fallahazad, B. and Tutuc, E., Applied Physics Letters 101(22), 223104 (2012).CrossRefGoogle Scholar
Yu, Y., Yu, Y., Xu, C., Barrette, A., Gundogdu, K. and Cao, L., Physical Review B 93(20), 201111 (2016).CrossRefGoogle Scholar
Amani, M., Lien, D.-H., Kiriya, D., Xiao, J., Azcatl, A., Noh, J., Madhvapathy, S. R., Addou, R., Santosh, K. and Dubey, M., Science 350 (6264), 1065-1068 (2015).CrossRefGoogle Scholar
Lin, M.-F., Kochat, V., Krishnamoorthy, A., Bassman, L., Weninger, C., Zheng, Q., Zhang, X., Apte, A., Tiwary, C. S., Shen, X., Li, R., Kalia, R. K., Ajayan, P., Nakano, A., Vashishta, P., Shimojo, F., Wang, X., Fritz, D. M. and Bergmann, U., (Nature Communications, 2017).Google Scholar
Mannebach, E. M., Li, R., Duerloo, K.-A., Nyby, C., Zalden, P., Vecchione, T., Ernst, F., Reid, A. H., Chase, T. and Shen, X., Nano letters 15(10), 68896895 (2015).CrossRefGoogle Scholar
Mannebach, E. M., Duerloo, K.-A. N., Pellouchoud, L. A., Sher, M.-J., Nah, S., Kuo, Y.-H., Yu, Y., Marshall, A. F., Cao, L. and Reed, E. J., ACS nano 8(10), 1073410742 (2014).CrossRefGoogle Scholar
Cho, S., Kim, S., Kim, J. H., Zhao, J., Seok, J., Keum, D. H., Baik, J., Choe, D.-H., Chang, K. and Suenaga, K., Science 349 (6248), 625-628 (2015).CrossRefGoogle Scholar
Shimojo, F., Hattori, S., Kalia, R. K., Kunaseth, M., Mou, W., Nakano, A., Nomura, K.-i., Ohmura, S., Rajak, P. and Shimamura, K., The Journal of chemical physics 140(18), 18A529 (2014).CrossRefGoogle Scholar
Böker, T., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voß, D., Krüger, P., Mazur, A. and Pollmann, J., Physical Review B 64(23), 235305 (2001).CrossRefGoogle Scholar
Zhang, Y., Chang, T.-R., Zhou, B., Cui, Y.-T., Yan, H., Liu, Z., Schmitt, F., Lee, J., Moore, R. and Chen, Y., Nature nanotechnology 9(2), 111115 (2014).CrossRefGoogle Scholar