Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T22:28:58.379Z Has data issue: false hasContentIssue false

pH dependence of the charge recombination kinetics in bacterial RC reconstituted in liposomes

Published online by Cambridge University Press:  26 December 2018

Francesco Milano
Affiliation:
CNR−IPCF Institute for Physical and Chemical Processes, Via E. Orabona 4, I-70125 Bari, Italy
Livia Giotta
Affiliation:
Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, I-73100 Lecce, Italy
Angela Agostiano
Affiliation:
Department of Chemistry, University of Bari “A. Moro”, Via E. Orabona 4, I-70125 Bari, Italy
Roberta Ragni
Affiliation:
Department of Chemistry, University of Bari “A. Moro”, Via E. Orabona 4, I-70125 Bari, Italy
Massimo Trotta*
Affiliation:
CNR−IPCF Institute for Physical and Chemical Processes, Via E. Orabona 4, I-70125 Bari, Italy
*
*To whom correspondence should be addressed [email protected]
Get access

Abstract:

The photosynthetic Reaction Center from the carotenoidless mutant strain of the purple non sulphur bacterium Rhodobacter (R.) sphaeroides was reconstituted in artificial phospholipid vesicles (liposomes) to mimic the physiological membrane environment. The pH dependence in the interval 5 – 10 of the rate of the charge-recombination reactions from the final electron acceptors QA and QB to the primary electron donor (namely kAD and kBD) have been investigated. The liposomes were constituted of either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG), two of the main phospholipids found in the photosynthetic membrane of the bacterium. In both cases, the kAD has no pH dependence similarly to the detergent case. The kBD also has a pH dependence similar to the detergent case, having two distinct regions below pH 7 and above pH 9. Fitting of the titration curve to a function involving two protonation sites results in a marked shift of the pKAs between the different solubilizing environments. These differences are discussed in the frame of possible physiological implications.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Altamura, E., Milano, F., Tangorra, R. R., Trotta, M., Hassan Omar, O., Stano, P. and Mavelli, F., Proc. Natl. Acad. Sci. USA 114 (15), 3837-3842 (2017).CrossRefGoogle Scholar
Milano, F., Gerencser, L., Agostiano, A., Nagy, L., Trotta, M. and Maroti, P., J. Phys. Chem. B 111 (16), 4261-4270 (2007).CrossRefGoogle Scholar
Okamura, M. Y., Isaacson, R. A. and Feher, G., Proc. Natl. Acad. Sci. U. S. A. 72 (9), 3491-3495 (1975).CrossRefGoogle Scholar
Okamura, M. Y. and Feher, G., Annu. Rev. Biochem. 61, 861-896 (1992).CrossRefGoogle Scholar
Maroti, P. and Wraight, C. A., Biochim. Biophys. Acta 934 (3), 329-347 (1988).CrossRefGoogle Scholar
Nagy, L., Milano, F., Dorogi, M., Agostiano, A., Laczko, G., Szebenyi, K., Varo, G., Trotta, M. and Maroti, P., Biochemistry 43 (40), 12913-12923 (2004).CrossRefGoogle Scholar
McPherson, P. H., Schonfeld, M., Paddock, M. L., Okamura, M. Y. and Feher, G., Biochemistry 33 (5), 1181-1193 (1994).CrossRefGoogle Scholar
Prince, R. C. and Dutton, P. L., in The Photosynthetic Bacteria, edited by Sistrom, W. R. and Clayton, R. K. (Plenum Publishing Corp., New York., 1978), pp. 439-453.Google Scholar
Alexov, E. G. and Gunner, M. R., Biochemistry 38 (26), 8253-8270 (1999).CrossRefGoogle Scholar
Maroti, P., Hanson, D. K., Baciou, L., Schiffer, M. and Sebban, P., Proc. Natl. Acad. Sci. U. S. A. 91 (12), 5617-5621 (1994).CrossRefGoogle Scholar
Kleinfeld, D., Okamura, M. Y. and Feher, G., Biophys. J. 48 (5), 849-852 (1985).CrossRefGoogle Scholar
Paddock, M., Rongey, S. H., Feher, G. and Okamura, M. Y., Proc. Natl. Acad. Sci. USA 86 (17), 6602-6606 (1989).CrossRefGoogle Scholar
Paddock, M. L., Feher, G. and Okamura, M. Y., Biochemistry 34 (48), 15742-15750 (1995).CrossRefGoogle Scholar
Isaacson, R. A., Lendzian, F., Abresch, E. C., Lubitz, W. and Feher, G., Biophys. J. 69 (2), 311-322. (1995).CrossRefGoogle Scholar
Milano, F., Agostiano, A., Mavelli, F. and Trotta, M., Eur. J. Biochem. 270 (23), 4595-4605 (2003).CrossRefGoogle Scholar
De Leo, V., Catucci, L., Falqui, A., Marotta, R., Striccoli, M., Agostiano, A., Comparelli, R. and Milano, F., Langmuir 30 (6), 1599-1608 (2014).CrossRefGoogle Scholar
De Leo, V., Catucci, L., Di Mauro, A. E., Agostiano, A., Giotta, L., Trotta, M. and Milano, F., Ultrason. Sonochem. 35, 103-111 (2017).CrossRefGoogle Scholar
Milano, F., Italiano, F., Agostiano, A. and Trotta, M., Photosynth. Res. 100 (2), 107-112 (2009).CrossRefGoogle Scholar
Panahi, A. and Brooks, C. L. 3rd, J. Phys. Chem. B 119 (13), 4601-4607 (2015).CrossRefGoogle Scholar