Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T17:43:02.720Z Has data issue: false hasContentIssue false

Optimization of Degreasing-Sintering Process for Mg2Si/PLA Mixture and Influences of Additive Amount of Al on Sintered Density and Thermoelectric Performance of Mg2Si Fabricated by the Optimized Process

Published online by Cambridge University Press:  31 January 2020

Takashi Itoh*
Affiliation:
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8603, Japan
Takumi Nakano
Affiliation:
Department of Physical Engineering, School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8603, Japan
*
*Corresponding author: [email protected]
Get access

Abstract

Fused deposition modelling (FDM) type of 3D printing is widely used for manufacturing complex shaped polymer products. Recently, the metal/polymer composite products can be made by 3D printer using metal/polymer composite filament. Now, we are planning to develop a new manufacturing process of the thermoelectric (TE) elements or modules by combining the FDM-type 3D printing and the degreasing-sintering process. In this work, we focused on the degreasing-sintering process of the mixture of Mg2Si and polylactic acid (PLA) powders. Mg2Si compound powder was synthesized by a liquid-solid phase reaction (LSPR) method. The powder mixtures of Mg2Si, Al and PLA were pressed and heated in a pulse discharge sintering (PDS) chamber under a vacuum in various degreasing conditions. Following the degreasing, the sintering of Mg2Si was carried out in the same PDS chamber at various starting sintering temperatures. Sintered density, Seebeck coefficient and electrical resistivity of the consolidated Mg2Si were measured and the power factor as a TE performance was estimated from the TE properties. The optimum conditions of degreasing-sintering process maximizing the sintered density and the TE performance of Al-doped Mg2Si were investigated. Furthermore, the influences of the additive amount of Al on the sintered density and the TE performance of Mg2Si fabricated via the optimized degreasing-sintering process were investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jordan, J. M., 3D Printing, MIT Press, Cambridge, MA, U.S.A., (2019), pp. 1-24.CrossRefGoogle Scholar
Tao, Y., Wang, H., Li, Z., Li, P., Shi, S. Q., Materials 10, 399, doi:10.3390/ma10040339 (2017).Google Scholar
Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S., Composites Part B 80, 369-378 (2015).CrossRefGoogle Scholar
Guo, R., Ren, Z., Bi, H., Xu, M., Cai, L., Polymers 11, 549, doi:10.3390/polym11030549 (2019).CrossRefGoogle ScholarPubMed
Sweeney, C. B., Lackey, B. A., Pospisil, M. J., Achee, T. C., Hicks, V. K., Moran, A. G., Teipel, B. R., Saed, M. A., Green, M. J., Science Advances 3, e1700262, doi: 10.1126/sciadv.1700262 (2017).CrossRefGoogle Scholar
Guo, H., Lv, R., Bai, S., Nano Materials Science 1, 101115 (2019).CrossRefGoogle Scholar
Borja, A. L. M., Bueno, J. J. P., Lopez, M. L. M., MRS Advances 3(64), 3891-3898 (2018).CrossRefGoogle Scholar
German, R. M., Bose, A., Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Princeton, NJ, U.S.A., (1997), pp. 11-24.Google Scholar
Oztana, C., Ballikayab, S., Ozgunb, U., Karkkainena, R., Celik, E., Applied Materials Today 15, 7782 (2019).CrossRefGoogle Scholar
Itoh, T., Tominaga, A., Jinushi, T., Ishijima, Z., J. Jpn Soc. Powder Powder Metallurgy 61, 324-328 (2014).CrossRefGoogle Scholar
Itoh, T., J. Jpn Soc. Powder Powder Metallurgy 65, 154-157 (2018).CrossRefGoogle Scholar
Itoh, T., J. Jpn Soc. Powder Powder Metallurgy 65, 713-718 (2018).CrossRefGoogle Scholar
Itoh, T., J. Jpn Soc. Powder Powder Metallurgy 66, 80-88 (2019).CrossRefGoogle Scholar
Snarskii, A. A., Bulat, L. P., Thermoelectric Handbook: Macro to Nano, edited by Rowe, D. M., CRC Press, Boca Raton, FL, U.S.A., (2005) Chapter 45, pp. 1-11.Google Scholar
Tani, J., Kido, H., Intermetallics 15, 1202-1207 (2007).CrossRefGoogle Scholar
Fukano, M., Iida, T., Makino, K., Akasaka, M., Oguni, Y., Takanashi, Y., Mater. Res. Soc. Symp. Proc. Vol. 1044 (2008), 1044-U06-13, doi:10.1557/PROC-1044-U06-13.Google Scholar
Akasaka, M., Iida, T., Matsumoto, A., Yamanaka, K., Takanashi, Y., Imai, T., Hamada, N., J. Appl. Phys. 104, 013703 (2008).CrossRefGoogle Scholar
Choi, S., Kim, K., Kim, I., Kim, S., Seo, W., Current Applied Physics 11 ,S388-S391 (2011).CrossRefGoogle Scholar
Itoh, T., Hagio, K., AIP Conf. Proc. 1449, 207-210 (2012).CrossRefGoogle Scholar
Battiston, S., Fiameni, S., Saleemi, M., Boldrini, S., Famengo, A., Agresti, F., Stingaciu, M., Toprak, M.S., Fabrizio, M., Barison, S., J. Electronic Materials 42, 19561959 (2013).CrossRefGoogle Scholar
Hu, X., Mayson, D., Barnett, M. R., J. Alloys and Compounds 589, 485490 (2014).CrossRefGoogle Scholar
Farahi, N., VanZant, M., Zhao, J., Tse, J. S., Prabhudev, S., Botton, G. A., Salvador, J. R., Borondics, F., Liuf, Z., Kleinke, H., Dalton Trans . 43, 14983-14991 (2014).CrossRefGoogle Scholar
Zhao, J., Liu, Z., Reid, J., Takarabe, K., Iida, T., Wang, B., Yoshiya, U., Tse, J. S., J. Mater. Chem. A 3, 19774–19782 (2015).CrossRefGoogle Scholar
Isoda, Y., Tada, S., Kitagawa, H., Shinohara, Y., J. Electronic Materials 45, 1772-1778 (2016).CrossRefGoogle Scholar
Nieroda, P., Leszczynski, J., Kolezynski, A., J. Physics and Chemistry of Solids 103, 147-159 (2017).CrossRefGoogle Scholar
Kaur, K., Kumar, R., J. Electronic Materials 46, 4682-4689 (2017).CrossRefGoogle Scholar
Hayashibara, Y., Hayashi, K., Ando, I., Kubouchi, M., Ogawa, Y., Saito, W., Miyazaki, Y., Materials Transactions, 59, 1041- 1045 (2018).CrossRefGoogle Scholar
Kato, D., Iwasaki, K., Yoshino, M., Yamada, T., Nagasaki, T., J. Solid State Chemistry 258, 93-98 (2018).CrossRefGoogle Scholar