Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:13:21.808Z Has data issue: false hasContentIssue false

Optical properties of vertically aligned graphene sheets

Published online by Cambridge University Press:  12 January 2017

Takatoshi Yamada*
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN. Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN.
Makoto Hisa
Affiliation:
Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN.
Masataka Hasegawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN. Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN.
Get access

Abstract

We have developed deposition of vertically aligned graphene sheets on Cu foils by surface wave microwave plasma CVD and the transfer from Cu foil to quartz substrate to evaluate optical reflectances and transmittances of the inherent vertical aligned graphene sheets. Both reflectance and transmittance spectra are almost independent of incident angles in the range between 300 and 800nm. The reflectance is lower than 0.067%, which is lower than those of the commercial black alumite plate. The transmittances are less than the detection limit of the system. It is considered that the obtained low reflectance is attributed to the unique structure of the vertically aligned graphene sheets.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishan, J., Lei, T., Kim, H. R., Somg, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B, H. and Iijima, S., Nature Nanotechnol. 5, 574 (2011).CrossRefGoogle Scholar
Han, T.-H., Lee, Y., Choi, M.-R., Woo, S.-H., Bae, S.-H., Hong, B. H., Ahn, J.-H., and Lee, T.-W., Nat. Photonics 6, 105 (2012).CrossRefGoogle Scholar
Okigawa, Y., Mizutani, W., Suzuki, K., Ishihara, M., Yamada, T. ans Hasegawa, M., Jpn.J.Appl.Phys. 54, 095103 (2015).CrossRefGoogle Scholar
Matsumoto, T., Koizumi, T., Kawakami, Y., Okamoto, K. and Tomita, M., Optics Express 21, 30964 (2013).CrossRefGoogle Scholar
Mizuno, K., Ishi, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D.N., Yumura, M. and Hata, K., Proc.Natl.Acd.Sci.U.S.A.106, 6047 (2009).CrossRefGoogle Scholar
Hirao, T., Ito, K., Furuta, H., Yap, Y.K., Ikuno, T., Honda, S., Mori, Y., Sasaki, T. and Oura, K., Jpn.J.Appl. Phys 40, L631 (2001).Google Scholar
Hiramatsu, M., Shiji, K., Amano, H. and Hori, M., Appl. Phys. Lett. 23, 4708 (2004).CrossRefGoogle Scholar
Yamada, T., Kim, J., Ishihara, M. and Hasegawa, M., J.Phys.D: Appl.Phys. 46, 063001(2013).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J., Phys. Rev. B 64, 07541 (2001).CrossRefGoogle Scholar
Kato, R., Tsugawa, K., Okigawa, Y., Ishihara, M., Yamada, T. and Hasegawa, M., Carbon 77, 823 (2014).CrossRefGoogle Scholar