Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:09:01.886Z Has data issue: false hasContentIssue false

One-step Synthesis of Carbon Nanotubes Network with Rich Oxygenated Functional Groups via Microwave Plasma in Atmospheric Pressure

Published online by Cambridge University Press:  21 April 2020

Dashuai Li*
Affiliation:
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.
Ling Tong
Affiliation:
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.
Bo Gao
Affiliation:
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.
*
Get access

Abstract

An atmospheric pressure microwave plasma tubular furnace apparatus (MPTF) for the rapid synthesis of carbon nanotubes (CNTs) has been developed. CNTs have been synthesized by an Argon-Hydrogen microwave plasma using ethanol vapor as carbon source with the furnace temperature of 800 °C at the atmospheric pressure. The synthesized CNTs have been analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and are shown to be multi-walled and tangled and chemically connected to form a high-density network with the diameter at the range of 25-70 nm. The measurement of X-ray photoelectron spectroscopy (XPS) indicates that a large number of oxygenated functional groups grown on the surface of CNTs. These properties proved that the CNTs could be utilized as nanoscale templates for various applications.

Type
Articles
Copyright
Copyright © 2020 Materials Research Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lenka, Z., Marek, E., Ondrej, J., Zuzana, K., Petr, S., Jirina, M., Magdalena, K., Mariana, K., Jiri, B., and Anna, V., Plasma Process Polym 4, S245S249(2007).Google Scholar
Bundaleska, N., Tsyganov, D. L., Dias, A. I., Felizardo, E., Henriques, J. P., Dias, F. M., Abrashev, M., Kissovski, Z., and Tatarova, E., Phys. Chem. Chem. Phys. 20, 1381013824(2018).Google Scholar
Kumar, V., Kim, J. H., Pendyala, C., Chernomordik, B. D., and Sunkara, M. K., J. Phys. Chem. C 112, 1775017754(2008).Google Scholar
Iijima, S., Nature 354, 5658(1991).Google Scholar
Dai, H., ChemInform 34, 10351044(2003).Google Scholar
Muñoz, E., Maser, W., Benito, A., Martinez, M., Fuente, G., Righi, A., Sauvajol, J., Anglaret, E., and Maniette, Y., Appl. Phys. A: Mater Sci Process 70, 145151(2000).Google Scholar
Muñoz, E., Maser, W., Benito, A., Martinez, M., Fuente, G., Maniette, Y., Righi, A., Anglaret, E., and Sauvajol, J., Carbon 38, 14451451(2000).Google Scholar
Li, WZ., Xie, SS., Qian, LX., Chang, BH., Zou, BS., Zhou, WY., Zhao, RA., and Wang, G, Science 274, 17011703(1996).Google Scholar
Park, D., Kim, Y. H., and Lee, J. K., Carbon 41, 10251029(2003).Google Scholar
Hong, Y. C. and Uhm, H. S., Phys Plasmas 12, 5662(2005).Google Scholar
Kwon, K. Y., Yang, S. B., Kong, B. S., Kim, J., and Jung, H. T., Carbon 48, 45044509(2010).Google Scholar
Hecht, D. S., Thomas, D., Hu, L., Labous, C., Lam, T., Park, Y., Irvin, G., and Drzaic, P., J Soc Inf Display 17, 941946(2012).Google Scholar
Liu, J., Lai, L., Sahoo, N. G., Zhou, W., Shen, Z., and Chan, S. W., Aust J Chem 65, 12131222(2012).Google Scholar
Chen, W., Liu, X., Liu, Y., and Kim, H. I., Mater Lett 64, 25892592(2010).Google Scholar