Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T08:07:49.875Z Has data issue: false hasContentIssue false

Nickel-Infused Nanoporous Alumina as Tunable Solar Absorber

Published online by Cambridge University Press:  13 July 2020

Xuanjie Wang
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, United States
Hengyuan Yang
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, United States
Mei-Li Hsieh
Affiliation:
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, United States Department of Photonics, National Chiao-Tung University, Hsinchu City, Taiwan
James A. Bur
Affiliation:
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, United States
Shawn-Yu Lin
Affiliation:
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, United States
Shankar Narayanan*
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, United States
*
*Corresponding author: [email protected]
Get access

Abstract

Solar energy can alleviate our dependence on traditional energy sources like coal and petroleum. In this regard, the design and performance of solar absorbers are crucial for capturing energy from sunlight. Specifically, for applications relying on solar-thermal energy conversion, it is desirable to construct solar absorbers using scalable techniques that also allow a variation in optical properties. In this study, we demonstrate the ability to tune the spectral absorptance of nickel-infused nanoporous alumina using a scalable and inexpensive fabrication procedure. With simple variations in the geometry of the nanostructures, we enable broadband absorption with a net solar absorptance of 0.96 and thermal emittance of 0.98 and spectrally-selective absorption with a net solar absorptance of 0.83 and thermal emittance of 0.22. The simple manufacturing techniques presented in this study to generate nanoengineered surfaces can lead to further advancements in solar absorbers with well-controlled and application-specific optical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Z., Song, H., Ji, D., Li, C., Cheney, A., Liu, Y., Zhang, N., Zeng, X., Chen, B., Gao, J., Li, Y., Liu, X., Aga, D., Jiang, S., Yu, Z., and Gan, Q., Glob. Challenges 1, 1600003 (2017).CrossRefGoogle Scholar
Dongare, P.D., Alabastri, A., Neumann, O., Nordlander, P., and Halas, N.J., Proc. Natl. Acad. Sci. 116, 13182 (2019).CrossRefGoogle Scholar
Dongare, P.D., Alabastri, A., Pedersen, S., Zodrow, K.R., Hogan, N.J., Neumann, O., Wu, J., Wang, T., Deshmukh, A., Elimelech, M., Li, Q., Nordlander, P., and Halas, NJ., Proc. Natl. Acad. Sci. 114, 6936 (2017).CrossRefGoogle Scholar
Kuang, Y., Chen, C., He, S., Hitz, E.M., Wang, Y., Gan, W., Mi, R., and Hu, L., Adv. Mater. 31, 1900498 (2019).CrossRefGoogle Scholar
Kashyap, V., Al-Bayati, A., Sajadi, S.M., Irajizad, P., Wang, S.H., and Ghasemi, H., J. Mater. Chem. A 5, 15227 (2017).CrossRefGoogle Scholar
Zhang, P., Liao, Q., Yao, H., Cheng, H., Huang, Y., Yang, C., Jiang, L., and Qu, L., J. Mater. Chem. A 6, 15303 (2018).CrossRefGoogle Scholar
Li, X., Xu, W., Tang, M., Zhou, L., Zhu, B., Zhu, S., and Zhu, J., Proc. Natl. Acad. Sci. 113, 13953 (2016).CrossRefGoogle Scholar
Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., Zhu, S., and Zhu, J., Nat. Photonics 10, 393 (2016).CrossRefGoogle Scholar
Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., Gan, Q., Yu, Z., and Zhu, J., Sci. Adv. 2, e1501227 (2016).CrossRefGoogle Scholar
Li, Y., Lin, C., Zhou, D., An, Y., Li, D., Chi, C., Huang, H., Yang, S., Tso, C.Y., Chao, C.Y.H., and Huang, B., Nano Energy 64, 103947 (2019).CrossRefGoogle Scholar
Cao, F., Kraemer, D., Tang, L., Li, Y., Litvinchuk, A.P., Bao, J., Chen, G., and Ren, Z., Energy Environ. Sci. 8, 3040 (2015).CrossRefGoogle Scholar
Cao, F., McEnaney, K., Chen, G., and Ren, Z., Energy Environ. Sci. 7, 1615 (2014).CrossRefGoogle Scholar
Li, Y., Li, D., Zhou, D., Chi, C., Yang, S., and Huang, B., Sol. RRL 2, 1800057 (2018).CrossRefGoogle Scholar
Khodasevych, I.E., Wang, L., Mitchell, A., and Rosengarten, G., Adv. Opt. Mater. 3, 852 (2015).CrossRefGoogle Scholar
Ni, G., Li, G., Boriskina, S. V., Li, H., Yang, W., Zhang, T., and Chen, G., Nat. Energy l, 16126 (2016).CrossRefGoogle Scholar
Cooper, T.A., Zandavi, S.H., Ni, G.W., Tsurimaki, Y., Huang, Y., Boriskina, S. V., and Chen, G., Nat. Commun. 9, 1 (2018).Google Scholar
Li, Y., Hao, J., Song, H., Zhang, F., Bai, X., Meng, X., Zhang, H., Wang, S., Hu, Y., and Ye, J., Nat. Commun. 10, 2359 (2019).CrossRefGoogle Scholar
Wang, X., Hsieh, M.-L., Bur, J.A., Lin, S.-Y., and Narayanan, S., Mater. Today Energy 17, 100453 (2020).CrossRefGoogle Scholar
Nielsch, K., Müller, F., Li, A.-P., and Gösele, U., Adv. Mater. 12, 582 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
Sousa, C.T., Leitao, D.C., Proenca, M.P., Ventura, J., Pereira, A.M., and Araujo, J.P., Appl. Phys. Rev. 1, (2014).CrossRefGoogle Scholar
Qiblawey, H.M. and Banat, F., Desalination 220, 633 (2008).CrossRefGoogle Scholar
Hu, E., Yang, Y.P., Nishimura, A., Yilmaz, F., and Kouzani, A., Appl. Energy 87, 2881 (2010).CrossRefGoogle Scholar
Tian, Y. and Zhao, CY., Appl. Energy 104, 538 (2013).CrossRefGoogle Scholar
Lovegrove, K., Luzzi, A., Soldiani, I., and Kreetz, H., Sol. Energy 76, 331 (2004).CrossRefGoogle Scholar