Published online by Cambridge University Press: 26 February 2018
Metal organic precursor has a sufficiently high vapor pressure at low temperature, contributing high-speed low-temperature MOCVD-MoS2 film formation. We fabricated monolayer MoS2 by 1 step cold-wall MOCVD using di-isopropyl-diazadiene-molybdenum tricarbonyl [i-Pr2DADMo(CO)3] and di-tertiary-butyl disulfide [(t-C4H9)2S2]. These precursors are able to be vaporized using bubbling system and deposited at low temperature. From the XPS investigations, Mo-S bonding peaks were observed and S:Mo ratio was calculated as 2:1, suggesting formation of MoS2. Moreover, molybdenum carbides and nitrogen impurities were not observed which was confirmed by XPS and EDX. From the results of Raman spectroscopy, AFM height distribution, and spectroscopic ellipsometry, it was determined that the film thickness is 0.64 nm which is corresponding to monolayer MoS2, the lateral grain size is approximately 100 nm, and the bandgap energy is 1.8 eV.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.