Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:45:01.793Z Has data issue: false hasContentIssue false

Mineral derived lithium solid electrolyte

Published online by Cambridge University Press:  26 December 2017

Bo Wang*
Affiliation:
Imerys, San Jose, CA95134, U.S.A.
*
Get access

Abstract

Lithium solid electrolyte with NASICON structure in the form of Li1+2xAlxTi2−xSixP3−xO12 solid solution has been prepared by high temperature solid state reaction using low cost kaolin as the starting material. The crystal structure of the solid solution was investigated by powder X-ray diffraction. The AC impedance measurements indicate that ionic conductivity increased by more than one order of magnitude when a small amount of Al3+ and Si4+ ions were incorporated into the LiTi2(PO4)3 crystal structure. The significant improvement on ionic conductivity can be attributed to the increased interstitial Li+ ions in the crystal structure. The highest ionic conductivity was found in Li1.2Al0.1Ti1.9Si0.1P2.9O12: 8.3 x 10-5 S·cm-1 at room temperature (21°C) and 1.5 x 10-3 S·cm-1 at 100°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sudreau, F., Petit, D., Boilot, J. P., J. Solid State Chem. 83, 78 (1989).CrossRefGoogle Scholar
Iglesias, J. E., Pecharroman, C., Solid State Ionics 112, 309 (1998).CrossRefGoogle Scholar
Subramanian, M. A., Subramanian, R., Clearfield, A., Solid State Ionics 18–19, 562 (1986).CrossRefGoogle Scholar
Wang, B., Greenblatt, M., Wang, S., Hwu, S. J., Chem. Mater. 5, 23 (1993).CrossRefGoogle Scholar
Yamamoto, O., Sammes, N., J. Power Sources 196, 5128 (2011).Google Scholar
Arbi, K., París, M.A., Sanz, J., Dalton. Trans. 40, 10195 (2011).CrossRefGoogle Scholar
Kosova, N. V., Devyatkina, E. T., Stepanov, A. P., Buzlukov, A. L., Ionics 14, 303 (2008).CrossRefGoogle Scholar
Key, B., Schroeder, D.J.,, Ingram, B.J., Vaughey, J.T., Chem. Mater. 24, 287 (2012).CrossRefGoogle Scholar
Duluard, S., Paillassa, A., Puech, L., Vinatier, P., Turq, V., Rozier, P., Lenormand, P., Taberna, P.. Simon, P., Ansart, F., J. Eur. Ceram. Soc. 33, 1145 (2013).CrossRefGoogle Scholar
Morimoto, H., Awano, H., Terashima, J., Shindo, Y., Nakanishi, S., Ito, N., Ishikawaa, K., Tobishima, S.., J. Power Sources 240, 636 (2013).CrossRefGoogle Scholar
Morimoto, H., Hirukawa, M., Matsumoto, A., Kurahayashi, T., Ito, N., Tobishima, S.I., Electrochemistry 82, 870 (2014).CrossRefGoogle Scholar
Zhang, P., Wang, H., Si, Q., Matsui, M., Takeda, Y., Yamamoto, O., Imanishi, N., Solid State Ionics 272, 101 (2015).CrossRefGoogle Scholar
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., Adachi, G., J. Electrochem. Soc. 137, 1023 (1990).CrossRefGoogle Scholar
Yada, C., Iriyama, Y., Abe, T., Kikuchi, K., Ogumi, Z., Electrochem.Commun. 11, 413 (2009).CrossRefGoogle Scholar
Shimonishi, Y., Zhang, T., Imanishi, N., Im, D., Lee, D.J., Hirano, A., Takeda, Y., Yamamoto, O., Sammes, N., J. Power Sources 196, 5128 (2011).CrossRefGoogle Scholar
Murray, H.H., Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays, Vol. 2 (Elsevier, 2007) pp. 910.Google Scholar
Robert, J. P., Pickering, S. M., “Kaolin”, Industrial Minerals & Rocks: Commodities, Markets, and Uses, ed. Kogel, J.E. Jr., (SME, 2006) pp. 383399.Google Scholar
Natl. Bur. Stand. (U.S.) Monogr. 25, 21, 79 (1984).Google Scholar
Shannon, R. D., Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
Kobayashi, Y., Tabuchi, M., Nakamura, O., J. Power Sources 68, 407 (1997).CrossRefGoogle Scholar
Chen, H., Tao, H., Wu, Q., Zhao, X., J. Am. Ceram. Soc. 96, 801 (2013).CrossRefGoogle Scholar
Robertson, A., Fletcher, J.G., Skakle, J.M.S., West, A.R., J. Solid State Chem. 109, 530 (1994).CrossRefGoogle Scholar
Belonoshko, A., Am. Min. 98, 1881 (2013).Google Scholar
Zuckerman, J. J., Inorganic Reactions and Methods, Formation of Ceramics, Vol. 18. (John Wiley & Sons, 2009) pp. 215216.Google Scholar