Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T18:23:02.873Z Has data issue: false hasContentIssue false

Microstructural Modeling of Coupled Electromagnetic-Thermo-Mechanical Response of Energetic Aggregates to Infrared Laser Radiation and Dynamic Fracture

Published online by Cambridge University Press:  06 January 2016

J.A. Brown
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, U.S.A.
D.M. Bond
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, U.S.A.
M.A. Zikry*
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, U.S.A.
*
(Email: [email protected])
Get access

Abstract

A dislocation-density based crystalline plasticity, a finite viscoelasticity, and a nonlinear finite-element formulation were used to study the high strain-rate failure of energetic crystalline aggregates. The energetic crystals of RDX (cyclotrimethylene trinitramine) with a polymer binder were subjected to high strain-rate tensile loading, and the predictions indicate that high localized stresses and stress gradients develop due to mismatches along crystalline-crystalline and crystalline-amorphous interfaces. These high-stress interfaces are sites for crack nucleation and propagation, and the predictions are used to show how the cracks nucleate and propagate.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bourne, N. K., P. Roy. Soc. London A Mat. 457, 14011426 (2001).CrossRefGoogle Scholar
McGrane, S. D., and Moore, D. S., Propell. Explos. Pyrot. 36, 327334 (2011).CrossRefGoogle Scholar
Annapragada, S.R., Sun, D., and Garimella, S.V., Comp. Mater. Sci. 40, 255266. (2007).CrossRefGoogle Scholar
Tan, H., Huang, Y., Liu, C., and Geubelle, P.H., Int. J. Plast. 21, 18901918 (2005).CrossRefGoogle Scholar
Armstrong, R.W., Rev. Adv. Mater. Sci. 19, 1340 (2009).Google Scholar
Field, J.E., Bourne, N.K., Palmer, S.J.P., Walley, S.M., Sharma, J., and Beard, B.C., Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences. 339, 269283 (1992).Google Scholar
Hu, Z., Luo, H., Bardenhagen, S.G., Siviour, C.R., Armstrong, R.W., and Lu, H., Exp. Mech. 55, 289300 (2015).CrossRefGoogle Scholar
Rae, P. J., Palmer, S.J.P., Goldrein, H.T., Field, J.E., and Lewis, A.L., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 458, 22272242 (2002).CrossRefGoogle Scholar
Siviour, C.R., Laity, P.R., Proud, W.G., Field, J.E., Porter, D., Church, P.D., Gould, P., and Huntingdon-Thresher, W., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 464, 12291255 (2008).Google Scholar
LaBarbera, D.A., and Zikry, M.A., J. Mater. Sci. 50, 55495561 (2015).CrossRefGoogle Scholar
Zikry, M.A., Comput. Struct. 50, 337350 (1994).CrossRefGoogle Scholar
Ashmawi, W., and Zikry, M.A., J. Eng. Mater. Technol. 124, 8896 (2002).CrossRefGoogle Scholar
Shantraj, P., and Zikry, M.A., Int. J. Plast. 34, 154163 (2012).CrossRefGoogle Scholar
Shanthraj, P., and Zikry, M.A., Acta Materiala. 59, 76957702 (2011).CrossRefGoogle Scholar
Kaliske, M., and Rothert, H., Scr. Mater. 34, 11151121 (1997).Google Scholar
Mas, E., Clements, B., Blumenthal B, B., et al. AIP Conference Proceedings. 620, 661664 (2002).CrossRefGoogle Scholar
Wu, Q., and Zikry, M.A., Int. J. Solids Struct. 51, 4345–56 (2014).CrossRefGoogle Scholar
Hooks, D., Ramos, K., Bahr, D., AIP Conference Proceedings. 955, 789794 (2007).Google Scholar
Armstrong, R. and Elban, W., Materials Science and Technology. 22, 402413 (2006).Google Scholar
Gallagher, H.G., Halfpenny, P.J., Miller, J.C. et al. , Philos. Trans. : Phys. Sci. and Eng. 339, 293303 (1992).Google Scholar
Barua, A., and Zhou, M., Modell. Simul. Mater. Sci. Eng. 19, 055001 (2011).CrossRefGoogle Scholar
Voevodin, A., and Zabinski, J., J. Mater. Sci. 33, 319327 (1998).CrossRefGoogle Scholar