Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T06:59:10.223Z Has data issue: false hasContentIssue false

Micropatterned Flexible and Conformable Biofunctional Devices Using Silk Proteins

Published online by Cambridge University Press:  24 May 2016

Ramendra K. Pal
Affiliation:
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.
Ahmed A Farghaly
Affiliation:
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
Maryanne M. Collinson
Affiliation:
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
Subhas C. Kundu
Affiliation:
Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India.
Vamsi K. Yadavalli*
Affiliation:
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.
*
Get access

Abstract

Intrinsically conductive polymers have received increased attention in the biomedical field due to their mechanical flexibility, electronic and ionic conductivity. On the other hand, bio-derived polymers such as silk proteins (fibroin and sericin) are an important set of materials to realize mechanically deformable, biocompatible and biodegradable systems. Here, we show a ‘green’ approach to fabricate micropatterned, flexible biosensors using photoreactive silk proteins in conjunction with conductive polymers. A functional ink comprised of poly(3,4-ethylene dioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) with silk sericin as a carrier enables the formation of high resolution conducting micropatterns on a silk fibroin substrate via photolithography. The flexible and conformable organic device formed can be used to sense biomolecules with high sensitivity and selectivity. The micropatterned functional silk composites are made using an all water-based fabrication approach, and shown to be cell friendly and degradable. Such systems can find applications in implantable optical devices, bio-sensors, and bio-optoelectronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sakiyama-Elbert, S.E. and Hubbell, J.A., Annu. Rev. Mater. Res., 31, (2001).Google Scholar
Turner, A.P.F., Chem. Soc. Rev., 42, (2013).Google Scholar
Berggren, M. and Richter-Dahlfors, A., Adv. Mater. 19, 3201 (2007).CrossRefGoogle Scholar
Ouyang, S., Xie, Y., Wang, D., Zhu, D., Xu, X., Tan, T., and Fong, H.H., J. Nanomater., (2015).Google Scholar
Rivnay, J., Owens, R.M., and Malliaras, G.G., Chem. Mater., 26, (2014).Google Scholar
Kundu, B., Kurland, N.E., Bano, S., Patra, C., Engel, F.B., Yadavalli, V.K., and Kundu, S.C., Prog Polym Sci, 39, (2014).CrossRefGoogle Scholar
Tao, H., Kaplan, D.L., and Omenetto, F.G., Adv. Mater., 24, (2012).Google Scholar
Kurland, N.E., Dey, T., Wang, C.Z., Kundu, S.C., and Yadavalli, V.K., Adv. Mater., 26, (2014).Google Scholar
Kurland, N.E., Dey, T., Kundu, S.C., and Yadavalli, V.K., Adv. Mater., 25, 6207 (2013).Google Scholar
Pal, R.K., Kurland, N.E., Wang, C.Z., Kundu, S.C., and Yadavalli, V.K., ACS Appl Mater Inter, 7, (2015).Google Scholar
Pal, R.K., Farghaly, A.A., Collinson, M.M., Kundu, S.C., and Yadavalli, V.K., Adv. Mater., 28, (2016).CrossRefGoogle Scholar
Rockwood, D.N., Preda, R.C., Yucel, T., Wang, X., Lovett, M.L., and Kaplan, D.L., Nat. Protoc., 6, (2011).Google Scholar
Kim, D.H., Viventi, J., Amsden, J.J., Xiao, J.L., Vigeland, L., Kim, Y.S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y.G., Hwang, K.C., Zakin, M.R., Litt, B., and Rogers, J.A., Nat. Mater., 9, 511 (2010).Google Scholar
Guo, L., Ma, M.M., Zhang, N., Langer, R., and Anderson, D.G., Adv. Mater., 26, (2014).Google Scholar
Goto, Y., Otani, S., and Grace, A.A., Neuropharmacology, 53, (2007).Google Scholar