Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T18:40:32.120Z Has data issue: false hasContentIssue false

Mg and K Insertion in Glassy Amorphous Carbon vs Graphite as Potential Anode Materials: an Ab Initio Study

Published online by Cambridge University Press:  13 July 2016

Fleur Legrain
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
Konstantinos Kotsis
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
*
Get access

Abstract

In search for effective negative electrodes for Mg- and K-ion batteries, we investigate the potential of glassy amorphous carbon by means of density functional theory calculations. Specifically, we provide the energetics for Mg and K insertion in two different structures of amorphous carbon. The insertion sites are found to be well distributed in energy, with insertion energies E f vs. the cohesive energies of respectively Mg and K ranging from -1.1 to 2.8 eV for Mg and from -1.0 to 3.7 eV for K. To compare amorphous carbon to the most common structure of carbon (graphite), we study in addition the energetics associated with the insertion of Mg and K in graphite, for which two different stackings are considered for the two layers intercalating the Mg/K atom: the AB stacking which is most stable at the initial state of charge (in pure graphite) and the AA stacking which is most stable at the known final state of charge of K (K x C, x = 1/8). Already at the low concentration considered (x = 1/128), the insertion of Mg and K in graphite is found to favor the AA stacking, and to be thermodynamically unfavored (E f positive with E f = 1.9 eV for Mg and E f = 0.7 eV for K). Amorphization appears therefore to provide insertion sites for Mg and K of lower (and negative) energies. The effect is of larger extent for Mg than for K, so much so that the insertion of Mg becomes more favored than that of K in amorphous carbon, although in graphite K is more easily inserted than Mg.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kubota, K. and Komaba, S., J. Electrochem. Soc. 162, A2538A2550 (2015).Google Scholar
Kundu, D., Talaie, E., Duffort, V. and Nazar, L. F., Ang. Chem. Int. Ed. 54, 34313448 (2015).CrossRefGoogle Scholar
Gu, Y., Katsura, Y., Yoshino, T., Takagi, H. and Taniguchi, K., Sci. Rep. 5, 12486 (2015).Google Scholar
Xu, C., Chen, Y., Shi, S., Li, J., Kang, F. and Su, D., Sci. Rep. 5, 14120 (2015).CrossRefGoogle Scholar
Orikasa, Y., Masese, T., Koyama, Y., Mori, T., Hattori, M., Yamamoto, K., Okado, T., Huang, Z.-D., Minato, T., Tassel, C., Kim, J., Kobayashi, Y., Abe, T., Kageyama, H. and Uchimoto, Y., Sci. Rep. 4, 5622 (2014).Google Scholar
Muldoon, J., Bucur, C. B. and Gregory, T., Chem. Rev. 114, 1168311720 (2014).CrossRefGoogle Scholar
Komaba, S., Hasegawa, T., Dahbi, M. and Kubota, K., Electrochem. Commun. 60, 172175 (2015).CrossRefGoogle Scholar
Jian, Z., Luo, W. and Ji, X., J. Am. Chem. Soc. 137, 1156611569 (2015).Google Scholar
Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E. and Novák, P., J. Electrochem. Soc. 152, A474A481 (2005).Google Scholar
Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K. and Fujiwara, K., Adv. Funct. Mater. 21, 38593867 (2011).Google Scholar
Kawaguchi, M. and Kurasaki, A., Chem. Commun. 48, 68976899 (2012).Google Scholar
Kim, Y., Park, Y., Choi, A., Choi, N.-S., Kim, J., Lee, J., Ryu, J. H., Oh, S. M. and Lee, K. T., Adv. Mater. 25, 30453049 (2013).Google Scholar
Legrain, F., Sottmann, J., Kotsis, K., Gorantla, S., Sartori, S. and Manzhos, S., J. Phys. Chem. C 119, 1349613501 (2015).Google Scholar
Legrain, F., Malyi, O. and Manzhos, S., J. Power Sources 278, 197202 (2015).Google Scholar
Legrain, F., Malyi, O. I. and Manzhos, S., Comput. Mater. Sci. 94, 214217 (2014).Google Scholar
Jung, S. C., Jung, D. S., Choi, J. W. and Han, Y.-K., J. Phys. Chem. Lett. 5, 12831288 (2014).Google Scholar
Kohandehghan, A., Cui, K., Kupsta, M., Ding, J., Memarzadeh Lotfabad, E., Kalisvaart, W. P. and Mitlin, D., Nano Lett. 14, 58735882 (2014).Google Scholar
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D., J. Phys. Condens. Matter 14, 2745 (2002).Google Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
Kittel, C., Introduction to Solid State Physics, Wiley, Hoboken, NJ, 2005.Google Scholar
Troullier, N. and Martins, J. L., Phys. Rev. B 43, 19932006 (1994).Google Scholar
Grimme, S., J. Comput. Chem. 27, 17871799 (2006).Google Scholar
Baskin, Y. and Meyer, L., Phys. Rev. 100, 544544 (1955).Google Scholar
Tasaki, K., J. Phys. Chem. C 118, 14431450 (2014).Google Scholar
Okamoto, Y., J. Phys. Chem. C 118, 1619 (2014).Google Scholar
Sk, M. A., Manzhos, S., J. Power Sources 324, 572581 (2016).Google Scholar
Ziambaras, E., Kleis, J., Schröder, E., Hyldgaard, P., Phys. Rev. B 76, 155425 (2007).Google Scholar