Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T23:39:51.274Z Has data issue: false hasContentIssue false

Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π-conjugated fluorophore

Published online by Cambridge University Press:  22 December 2015

Danilo Vona
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy.
Marco Lo Presti
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy.
Stefania Roberta Cicco
Affiliation:
CNR-ICCOM, Via Orabona 4, 70126 Bari, Italy.
Fabio Palumbo
Affiliation:
CNR-NANOTECH, Via Orabona 4, 70126 Bari, Italy.
Roberta Ragni*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy.
Gianluca Maria Farinola
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy.
*
*email address: [email protected]
Get access

Abstract

The functionalization of biosilica shells (frustules) of diatoms microalgae with a tailored luminescent molecule is a convenient, scalable and biotechnological approach for obtaining new light emitting silica nanostructures with promising applications in photonics. In particular, here we report the synthesis of a red emitting organic fluorophore and its covalent linking to the surface of mesoporous biosilica extracted from Thalassiosira weissflogii diatoms cultured in our laboratories. The organic dye has a conjugated skeleton composed of thienyl, benzothiadiazolyl and phenyl units and a peripheral triethoxysilyl group which enables its stable binding onto the frustules surface. The protocol to extract the biosilica shells from living diatoms preserving their natural ornate nanostructured morphology is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ying, J. Y., Mehnert, C. P. and Wong, M. S., Angew. Chem. Int. Ed. 38, 56 (1999).3.0.CO;2-E>CrossRefGoogle Scholar
Suzuki, K., Ikari, K. and Imai, H., J. Am. Chem. Soc. 126, 462 (2004).Google Scholar
Wang, Y., Cai, J., Jiang, Y., Jiang, X. and Zhang, D., Appl. Microbiol. Biotechnol. 97, 453 (2012).Google Scholar
Pan, Z., Lerch, S. J. L., Xu, L., Li, X., Chuang, Y.-J., Howe, J. Y., Mahurin, S. M., Dai, S. and Hildebrand, M., Scientific Reports 4, 6117 (2014).Google Scholar
Cicco, S. R., Vona, D., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G. M., ChemPlusChem 80, 1104 (2015).Google Scholar
De Stefano, L., Maddalena, P., Moretti, L., Rea, I., Rendina, I., De Tommasi, E., Mocella, V. and De Stefano, M., Superlattices Microstruct. 46, 84 (2009).CrossRefGoogle Scholar
Megens, M., Wijnhoven, J. E. G. J., Lagendijk, A. and Vos, W.L., Phys. Rev. A 59, 4727 (1999).Google Scholar
Desclés, J., Vartanian, M., El Harrak, A., Quinet, M., Bremond, N., Sapriel, G., Bibette, J. and Lopez, P. J., New Phytologist 177, 822 (2008).Google Scholar
Crivillers, N., Favaretto, L., Zanelli, A., Manet, I., Treier, M., Morandi, V., Gazzano, M., Samorì, P. and Melucci, M., Chem. Commun. 48, 12162 (2012).CrossRefGoogle Scholar
Lang, Y., del Monte, F., Collins, L., Thompson, K., Rodriguez, B. J., Dockery, P., Finn, D. P. and Pandit, A., Nature Commun. 4, 3683 (2013).CrossRefGoogle Scholar
Boas, U., Dhanabalan, A., Greve, D. R. and Meijer Synlett, E. W. 5, 634 (2001).Google Scholar