Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T11:13:07.140Z Has data issue: false hasContentIssue false

Kinetics and Atomic Mechanisms of Structural Phase Transformations in Photoexcited Monolayer TMDCs

Published online by Cambridge University Press:  29 January 2018

Aravind Krishnamoorthy*
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089
Lindsay Bassman
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089
Rajiv K. Kalia
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089
Aiichiro Nakano
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089
Fuyuki Shimojo
Affiliation:
Department of Physics, Kumamoto University, Kumamoto860-8555, Japan
Priya Vashishta
Affiliation:
Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA90089
*
Get access

Abstract

Rapid transitions between semiconducting and metallic phases of transition-metal dichalcogenides are of interest for 2D electronics applications. Theoretical investigations have been limited to using thermal energy, lattice strain and charge doping to induce the phase transition, but have not identified mechanisms for rapid phase transition. Here, we use density functional theory to show how optical excitation leads to the formation of a low-energy intermediate crystal structure along the semiconductor-metal phase transition pathway. This metastable crystal structure results in significantly reduced barriers for the semiconducting-metal phase transition pathway leading to rapid transition in optically excited crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chhowalla, M., Voiry, D., Yang, J. E., Shin, H. S., and Loh, K. P., Mrs Bull 40, 585 (2015).Google Scholar
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M. W., and Chhowalla, M., Acs Nano 6, 7311 (2012).CrossRefGoogle Scholar
Duerloo, K. A. N., Li, Y., and Reed, E. J., Nature Communications 5 (2014).CrossRefGoogle Scholar
Huang, C. M., Wu, S., Sanchez, A. M., Peters, J. J. P., Beanland, R., Ross, J. S., Rivera, P., Yao, W., Cobden, D. H. and Xu, X., Nature Materials 13, 1096 (2014).Google Scholar
Friedman, A. L., Perkins, F. K., Hanbicki, A. T., Culbertson, J. C., and Campbell, P. M., Nanoscale 8, 11445 (2016).Google Scholar
Kappera, R., Voiry, D., Yalcin, S. E., Branch, B., Gupta, G., Mohite, A. D., and Chhowalla, M., Nature Materials 13, 1128 (2014).CrossRefGoogle Scholar
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D. C. B., Fujita, T., Chen, M., Asefa, T., Shenoy, V. B., Eda, G. and Chhowalla, M., Nature Materials 12, 850 (2013).Google Scholar
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M. W., and Chhowalla, M., Nano Letters 11, 5111 (2011).Google Scholar
Radisavljevic, B. and Kis, A., Nature Materials 12, 815 (2013).CrossRefGoogle Scholar
Cheng, Y. C., Nie, A. M., Zhang, Q. Y., Gan, L. Y., Shahbazian-Yassar, R., and Schwingenschlogl, U., Acs Nano 8, 11447 (2014).Google Scholar
Zhang, C. X., Santosh, K. C., Nie, Y., Liang, C., Vandenberghe, W. G., Longo, R. C., Zheng, Y., Kong, F., Hong, S., Wallace, R. M., and Cho, K., ACS Nano 10, 7370 (2016).CrossRefGoogle Scholar
Ryzhikov, M. R., Slepkov, V. A., Kozlova, S. G., Gabuda, S. P., and Fedorov, V. E., J Comput Chem 36, 2131 (2015).Google Scholar
Enyashin, A. N., Yadgarov, L., Houben, L., Popov, I., Weidenbach, M., Tenne, R., Bar-Sadan, M., and Seifert, G., Journal of Physical Chemistry C 115, 24586 (2011).Google Scholar
Raffone, F., Ataca, C., Grossman, J. C., and Cicero, G., J Phys Chem Lett 7, 2304 (2016).Google Scholar
Calandra, M., Physical Review B 88 (2013).CrossRefGoogle Scholar
Mortazavi, B., Ostadhossein, A., Rabczuk, T., and van Duin, A. C. T., Phys Chem Chem Phys 18, 23695 (2016).Google Scholar
Kang, Y., Najmaei, S., Liu, Z., Bao, Y., Wang, Y., Zhu, X., Halas, N. J., Nordlander, P., Ajayan, P. M., Lou, J., and Fang, Z., Advanced Materials 26, 6467 (2014).CrossRefGoogle Scholar
Lin, Y. C., Dumcencon, D. O., Huang, Y. S., and Suenaga, K., Nat Nanotechnol 9, 391 (2014).Google Scholar
Song, S., Keum, D. H., Cho, S., Perello, D., Kim, Y., and Lee, Y. H., Nano Letters 16, 188 (2016).Google Scholar
Wang, L. F., Xu, Z., Wang, W. L., and Bai, X. D., Journal of the American Chemical Society 136, 6693 (2014).Google Scholar
Li, Y., Duerloo, K. A. N., Wauson, K., and Reed, E. J., Nature Communications 7 (2016).Google Scholar
Mannebach, E. M., Li, R., Duerloo, K. A., Nyby, C., Zalden, P., Vecchione, T., Ernst, F., Reid, A. H., Chase, T., Shen, X., Weathersby, S., Hast, C., Hettel, R., Coffee, R., Hartmann, N., Fry, A. R., Yu, Y., Cao, L., Heinz, T. F., Reed, E. J., Durr, H. A., Wang, X., and Lindenberg, A. M., Nano Letters 15, 6889 (2015).CrossRefGoogle Scholar
Kolobov, A. V., Fons, P., and Tominaga, J., Physical Review B 94 (2016).Google Scholar
Blöchl, P. E., Physical Review B 50, 17953 (1994).Google Scholar
Kresse, G. and Furthmuller, J., Physical Review B 54, 11169 (1996).Google Scholar
Kresse, G. and Furthmuller, J., Comp Mater Sci 6, 15 (1996).Google Scholar
Henkelman, G., Uberuaga, B. P., and Jonsson, H., Journal of Chemical Physics 113, 9901 (2000).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Physical Review Letters 77, 3865 (1996).Google Scholar
Huang, H. H., Fan, X. F., Singh, D. J., Chen, H., Jiang, Q., and Zheng, W. T., Phys Chem Chem Phys 18, 4086 (2016).CrossRefGoogle Scholar
Naylor, C. H., Parkin, W. M., Ping, J., Gao, Z., Zhou, Y. R., Kim, Y., Streller, F., Carpick, R. W., Rappe, A. M., Drndi, M., Kikkawa, J. M., and Johnson, A. T. C., Nano Letters 16, 4297 (2016).Google Scholar
Esfahani, D. N., Leenaerts, O., Sahin, H., Partoens, B., and Peeters, F. M., Journal of Physical Chemistry C 119, 10602 (2015).Google Scholar
Pandey, M., Bothra, P., and Pati, S. K., Journal of Physical Chemistry C 120, 3776 (2016).Google Scholar
Bang, J., Meng, S., Sun, Y. Y., West, D., Wang, Z. G., Gao, F., and Zhang, S. B., Proceedings of the National Academy of Sciences of the United States of America 110, 908 (2013).Google Scholar
Kolesov, G., Vinichenko, D., Tritsaris, G. A., Friend, C. M., and Kaxiras, E., J Phys Chem Lett 6, 1624 (2015).CrossRefGoogle Scholar
Bealing, C. R. and Ramprasad, R., Journal of Chemical Physics 139 (2013).Google Scholar