Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:24:21.903Z Has data issue: false hasContentIssue false

Improved CdTe Solar-Cell Performance with An Evaporated Te Layer before The Back Contact

Published online by Cambridge University Press:  05 June 2017

Andrew Moore*
Affiliation:
Colorado State University, Fort Collins, CO, USA
Tao Song
Affiliation:
Colorado State University, Fort Collins, CO, USA
James Sites
Affiliation:
Colorado State University, Fort Collins, CO, USA
*
Get access

Abstract

CdTe solar cells with a Te-buffer layer adjacent to the back contact were fabricated. The effects of the Te layer on cell performance were evaluated in detail. The carrier density of the Te layer (1018 cm-3) was measured. The valence band offset of the CdTe/Te interface (∼0.3-0.5 eV) was determined from current-voltage-temperature measurements and published reports. These values were incorporated into a simulation model and compared to the measured experimental performance with good agreement. Most notably, it was found that the Te layer allowed improved cell performance with less Cu required to form the back contact.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kurtz, S. and Levi, D., Best Research-Cell Efficiencies, (2017). Available at: https://commons.wikimedia.org/wiki/File:PVeff(rev170117).png (accessed 4 March, 2017).Google Scholar
Shockley, W., Queisser, H.J., J. Appl. Phys. 32, 510 (1961).Google Scholar
Koishiyev, G.T., Sites, J.R., Dhere, N., Photovolt. Spec. Conf., 2008. 33rd IEEE. (2008).Google Scholar
Stollwerck, G., Sites, J.R., Proc. of the 13th EU PVSEC, 2020-2022 (1995).Google Scholar
Pan, J., Gloeckler, M., Sites, J. R., J. Appl. Phys. 100.12, 124505 (2006).CrossRefGoogle Scholar
Hegedus, S. S., McCandless, B. E., Sol. Energy Mater., 88.1, 75-95 (2005).CrossRefGoogle Scholar
Rose, D. H., Dhere, R. G., Prog. in Photovoltaics Res.. and Appl. 7.5, 331-340 (1999).Google Scholar
Bätzner, D. L., Romeo, A., Zogg, H., Tiwari, A. N., Thin Solid Films 387.1, 151-154 (2001).Google Scholar
Krasikov, D., Sankin, I., J. Mater. Chem. A, 5.7, 3503-3513 (2017).Google Scholar
Dobson, K. D., Visoly-Fisher, I., Cahen, D., Sol. Energy Mater. 62.3, 295-325 (2000).Google Scholar
Chin, K. K., Sol. Energy Mater. 94.10, 1627-1629 (2010).CrossRefGoogle Scholar
Niles, D.W., Li, X., Albin, D., Prog. Photovolt.: Res. and Appl. 4.3, 225-229 (1996).3.0.CO;2-6>CrossRefGoogle Scholar
Niles, D.W., Li, X., Sheldon, P., Höchst, H., J. Appl. Phys. 77.9, 4489-4493 (1995).Google Scholar
Uda, H., Ikegami, S., Sonomura, H., Sol. Energy Mater. 35, 293298 (1994).Google Scholar
Kraft, D., Thissen, A., Broetz, J., Flege, S., J. Appl. Phys. 94.5, 3589-3598 (2003).Google Scholar
Fritsche, J., Kraft, D., Klein, A., Jaegermann, W., Thin Solid Films 403, 252257 (2002).Google Scholar
Xia, W., Lin, H., Irfan, I., Wang, C., Gao, Y Sol. Energy Mater., 128 411420 (2014).Google Scholar
Swanson, D. E., Kephart, J. M., Kobyakov, P. S., J. Vac. Sci. Technol. A 34.2, 021202 (2016).Google Scholar
Munshi, A.H., Kephart, J.M., Sampath, W.S., Photovolt. Spec. Conf., 2016 IEEE 43rd. (2016).Google Scholar
Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P., Thin solid films, 480, 392398 (2005).CrossRefGoogle Scholar
Blum, FA Jr, Deaton, BC, Phys. Rev. 137.5A, A1410 (1965).Google Scholar
Song, T., Thesis, PhD., Colorado State University, 2017.Google Scholar
Song, T., Sites, J.R., Photovolt. Spec. Conf., 2017. PVSC. 44rd IEEE. (2017).Google Scholar
Scheer, R., J. Appl. Phys. 105.10, 104505 (2009).Google Scholar
Rau, U., Jasenek, A., Schock, H. W., Meyer, T., Thin Solid Films 361, 298302 (2000).Google Scholar
Nadenau, V., Rau, U., Jasenek, A., J. Appl. Phys. 87.1, 584-593 (2000).Google Scholar
van der Pauw, L, Philips Res. Rep 13, 19 (1958).Google Scholar