Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T04:15:51.906Z Has data issue: false hasContentIssue false

Hexagonal Boron Nitride Single Crystal Thermal Oxidation and Etching in Air: An Atomic Force Microscopy Study

Published online by Cambridge University Press:  02 January 2019

N. Khan*
Affiliation:
Georgia Gwinnett College, School of Science and Technology, Lawrenceville, GA, 30043
E. Nour
Affiliation:
Georgia Gwinnett College, School of Science and Technology, Lawrenceville, GA, 30043
J. Mondoux
Affiliation:
Georgia Gwinnett College, School of Science and Technology, Lawrenceville, GA, 30043
S. Liu
Affiliation:
Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, KS, 66506
J.H. Edgar
Affiliation:
Kansas State University, Tim Taylor Department of Chemical Engineering, Manhattan, KS, 66506
Y. Berta
Affiliation:
Georgia Institute of Technology, School of Material Science and Engineering, Atlanta, GA 30332
*
Get access

Abstract

Hexagonal boron nitride (hBN), a two dimensional (2D) material, has emerged as an important substrate and dielectric for electronic, optoelectronic, and photonic devices based on graphene and other atomically thin two dimensional materials. Here we report on the initial oxidation of (0001) hBN single crystals in ambient air as functions of temperature and time, as determined by atomic force microscopy (AFM) and scanning electron microscope with energy dispersive X-ray spectroscopy (SEM/EDS). For oxidation times of 20 minutes, the first evidence of oxidation appears at 900°C, with the formation of shallow, hexagonal-, and irregular-shaped pits that are less than 100 nm across and several nanometer deep. Oxidation at 1100°C for 20 minutes produced 1.0-2.0-micron size pits with flat and pointed bottoms that were approximately hexagonal-shaped, but with rough and irregular edges, and multiple interior steps. Oxidation was not uniform on the surface of hBN, but starts where dislocations in the crystal intersected the surfaces. Pit depth increased linearly with temperature and oxidation times. In addition to the surface pits, small particles formed on the surface. Elemental analysis of the thermally oxidized hBN crystals by SEM/EDS revealed the major elements of these particles were boron and oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cassabois, G., Valvin, P., and Gil, B., Nature Photonics 10, 262268 (2016).CrossRefGoogle Scholar
Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Kvashnin, A. G., Kvashnin, D. G., Lou, , Yakobson, B. I., and Ajayan, P. M., Nano Lett. 10, 3209 (2010).CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nature Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
Tay, R. Y., Griep, M. H., Mallick, G., Tsang, S. H., Singh, R. S., Tumlin, T., Teo, E. H. T., and Karna, S. P., Nano Lett. 14 (2), 839846 (2014).CrossRefGoogle Scholar
Jang, S. K., Youn, J., Song, Y. J., Lee, S., Sci. Rep., 6 30449 (2016).CrossRefGoogle Scholar
Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Dresselhaus, M., Palacios, T., and Kong, J., ACS Nano 6 (10), 85838590 (2012).CrossRefGoogle Scholar
Lee, K. H., Shin, H. J., Lee, J., Lee, I. Y., Kim, G. H., Choi, J. Y., and Kim, S. W., Nano Lett. 12, 714718 (2012).CrossRefGoogle Scholar
Xue, J., Yamagishi, J. S., Bulmash, D., Jacquod, P., Deshpande, A., Watanabe, K., Taniguchi, T., Herrero, P. J. & LeRoy, B. J., Nature Mater. 10, 282285 (2011).CrossRefGoogle Scholar
Decker, R., Wang, Y., Brar, V. W., Regan, W., Tsai, H. Z., Wu, Q., Gannett, W., Zettl, A., Crommie, M. F., Nano Lett. 11(6), 22912295 (2011).CrossRefGoogle Scholar
Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M., Zettl, A., Appl. Phys. Lett. 98, 242105 (2011).CrossRefGoogle Scholar
Nan, H.Y., Ni, Z.H., Wang, J., Zafar, Z., Shi, Z.X., and Wang, Y.Y., J. Raman Spectroscopy 44, 10181021 (2013).CrossRefGoogle Scholar
Li, X., Yin, J., Zhou, J., Guo, W., Nanotechnology 25, 105701 (2014).CrossRefGoogle Scholar
Liu, Z., Gong, Y., Zhou, W., Ma, L., Yu, J., Idrobo, J. C., Jung, J., MacDonald, A. H., Vajtai, R., Lou, J., and Ajayan, P. M., Nature Communications 4, 2541 (2013).CrossRefGoogle Scholar
Mahvash, F., Eissa, S., Bordjiba, T., Tavares, A. C., Szkopek, T., Siaj, M., Sci. Rep., 7, 42139. (2017).CrossRefGoogle Scholar
Garcia, A., Neumann, M., Amet, F., Williams, J.R, Watanabe, K., Taniguchi, T., Goldhaber, D. G., Nano Lett. 12. 4449–54 (2012).CrossRefGoogle Scholar
Li, L. H., Cervenka, J., Watanabe, K., Taniguchi, T., Chen, Y., ACS Nano 8 (10), 14571462 (2014).CrossRefGoogle Scholar
Son, S.-K., Šiškins, M., Mullan, C., Yin, J., Kravets, V.G., Kozikov, A., Ozdemir, S., Alhazmi, M., Holwill, M., Watanabe, K., Taniguchi, T., Ghazaryan, D., Novoselov, K.S., Fal’kol, V.I., and Mishchenko, A., 2D Mater. 5 11006 (2018).CrossRefGoogle Scholar
Hoffman, T.B., Clubine, B., Zhang, Y., Snow, K., Edgar, J.H., Journal of Crystal Growth. 393, 114118 (2014).CrossRefGoogle Scholar
Hoffman, T.B., Zhang, Y., Edgar, J.H., Khan, N., and Szoszkiewicz, R., Materials Science & Technology, 15911598 (2014).Google Scholar
Caldwell, J.D., Anderson, T. J., Culbertson, J. C., Jernigan, G. G., Hobart, K. D., Kub, F. J., Tadjer, M. J., Tedesco, J. L., Hite, J. K., Mastro, M. A., Ward, R. L. M., Eddy, C. R. Jr., Campbell, P. M., and Gaskill, D. K., ACS Nano 4, 11081114 (2010).CrossRefGoogle Scholar
Edgar, J. H., Liu, S., Hoffman, T., Zhang, Yichao, Twigg, M. E., Bassim, N. D., Liang, S., and Khan, N., J. Appl. Phys 122, 225110 (2017).CrossRefGoogle Scholar
Oda, K., Yoshio, T., J. Mater. Sci. 28, 65626566 (1993).CrossRefGoogle Scholar
Oda, K., Aoki, K., Inada, S., Nagae, M. and Yoshio, T.,J. Ceram.Soc. Jpn. 111, 00810082 (2003).CrossRefGoogle Scholar