Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:10:04.575Z Has data issue: false hasContentIssue false

Functionalized Carbonaceous Materials as Cathode for Lithium-Ion Batteries

Published online by Cambridge University Press:  13 June 2016

Hai Zhong
Affiliation:
National Key Laboratory of Science and Technology on Power Source, Tianjin Institute of Power Source, Tianjin, 300384, P. R. China
Chunhua Wang
Affiliation:
National Key Laboratory of Science and Technology on Power Source, Tianjin Institute of Power Source, Tianjin, 300384, P. R. China College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
Zhibin Xu
Affiliation:
National Key Laboratory of Science and Technology on Power Source, Tianjin Institute of Power Source, Tianjin, 300384, P. R. China
Fei Ding*
Affiliation:
National Key Laboratory of Science and Technology on Power Source, Tianjin Institute of Power Source, Tianjin, 300384, P. R. China
Xingjiang Liu
Affiliation:
National Key Laboratory of Science and Technology on Power Source, Tianjin Institute of Power Source, Tianjin, 300384, P. R. China
*
Get access

Abstract

Activated carbon materials are integrated into functionalization of graphene nano-sheets to serve as a high-power lithium cathode. The electrochemical performance shows that the composite displays the highest reversible capacity (c. 170 mAh g-1) comparing with functionalized graphene and activated carbon. Also, approximately 92% of its capacity can be retained after 4,000 cycles at a current of 1 A g-1. Moreover, the composite exhibits an excellent rate performance, a reversible capacity of 90 mAh g-1 even at 6 A g-1, which corresponds to the power density of 15.2 kW kg-1 and energy density of 227 Wh kg-1, respectively. The high performance of this composite can be attributed to the fact that the activated carbon particles not only reduce the graphene sheet stacking thus making it easier for ions to diffuse, but also act as an ion storage buffer against accelerating electron transfer.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tarascon, J.M., Key challenges in future Li-battery research, Phil. Trans. R. Soc. A 368 (2010) 32273241.Google Scholar
Väyrynen, A., Salminen, J., Lithium ion battery production, J. Chem. Thermo- dynamics 46 (2012) 8085.Google Scholar
Li, F., Jiang, X., Zhao, J.J., Zhang, S.B., Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy 16 (2015) 488515.CrossRefGoogle Scholar
Ha, S.H., Jeong, Y.S., Lee, Y.J., Free standing reduced graphene oxide film cathodes for lithium ion batteries, ACS Appl. Mater. Interfaces 5 (2013) 1229512303.Google Scholar
Song, Z.P., Zhan, H., Zhou, Y.H., Polyimides: Promising Energy-Storage Materials, Angew. Chem. 122 (2010) 86228626.Google Scholar
Yoo, J.J., Balakrishnan, K., Huang, J.S., Meunier, V., Sumpter, B.G., Srivastava, A., Conway, M., Reddy, A.L.M., Yu, J., Vajtai, R., Ajayan, P.M., Ultrathin Planar Graphene Supercapacitors, Nano Lett. 11 (2011) 14231427.CrossRefGoogle ScholarPubMed
Weingarth, D., Cericola, D., Mornaghini, F.C.F., Hucke, T., Kotz, R., Carbon additives for electrical double layer capacitor electrodes, J. Power Sources 266 (2014) 475480.CrossRefGoogle Scholar
Cougnon, C., Lebegue, E., Pognon, G., Impedance spectroscopy study of a catechol- modified activated carbon electrode as active material in electrochemical capacitor, J. Power Sources 274 (2015) 551559.Google Scholar
Kim, H., Park, K.Y., Hong, J., Kang, K., All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries, SCIENTIFIC REPORTS 2014, DOI: 10.1038/srep05278.Google Scholar
Wang, H.L., Casalongue, H.S., Liang, Y., Dai, H.J., Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials, J. Am. Chem. Soc. 132 (2010) 74727477.CrossRefGoogle ScholarPubMed
Chen, L.F., Yu, Z.Y., Wang, J.J., Li, Q.X., Tan, Z.Q., Zhu, Y.W., Yun, S.H., Metal-like fluorine-doped β-FeOOH nanorodsgrown on carbon cloth for scalable- performance supercapacitor, Nano Energy 11 (2015) 119128.Google Scholar
Yuan, C., Zhang, X., Su, L., Gao, B., Shen, L., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, J. Mater. Chem. 19 (2009) 57725777.Google Scholar
Wang, L., Wang, D., Dong, Z., Zhang, F., Jin, J., Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO2Nanocomposites for Lithium Ion Battery, Nano. Lett. 13 (2013) 17111716.Google Scholar
Xiang, C., Li, M., Zhi, M., Manivannan, A., Wu, N., A reduced graphene oxide/Co3O4 composite for supercapacitor electrode, J. Power Sources 226 (2013) 6570.Google Scholar
Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V., Highly super capacitive electrodes made of graphene/poly(pyrrole), Chem. Commun. 47 (2011) 57535755.Google Scholar
Xu, J.J., Wang, K., Zu, S.Z., Han, B.H., Wei, Z.X., Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS nano 4 (2010) 50195026.Google Scholar
Kim, M., Lee, C., Jang, J., Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity, Adv. Funct. Mater. 24 (2014) 24892499.Google Scholar
Jang, B.Z., Liu, C.G., Neff, D., Yu, Z.N., Wang, M.C., Xiong, W., Zhamu, A., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices, Nano Lett. 11 (2011) 37853791.Google Scholar
Zhong, H., Yang, Y.B., Ding, F., Wang, D.H., Zhou, Y.H., Zhan, H., A Si-MnOOH composite with superior lithium storage properties, Chem. Commun. 51 (2015) 61646167.Google Scholar
Shi, Y.F., Guo, B.K., Corr, S.A., Shi, Q.H., Hu, Y.S., Heier, K.R., Chen, L.Q., Seshadri, R., Stucky, G.D., Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity, Nano Lett. 9 (2009) 42154220.Google Scholar
Zhong, H., Wang, G.F., Song, Z.P., Li, X., Tang, H.D., Zhou, Y.H., Zhan, H., Organometallic polymer material for energy Storage, Chem. Commun. 50 (2014) 67686770.Google Scholar
Simon, P., Gogotsi, Y., Materials for Electrochemical Capacitors, Nature materials 7 (2008) 845854.Google Scholar