Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T01:26:00.817Z Has data issue: false hasContentIssue false

Fluoride removal using a MgFe hydrotalcite and a MgFe oxide

Published online by Cambridge University Press:  26 November 2020

López-Castillo Jessica G
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Macedo-Miranda Guadalupe
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Martínez-Gallegos Sonia*
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Ordoñez- Regíl Eduardo
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, México, C.P. 52750.
Álvarez-García Sonia
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Illescas- Martínez Javier
Affiliation:
Tecnológico Nacional de México/ Instituto Tecnológico de Toluca/ División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca. Av. Tecnológico S/N Col Agrícola Bellavista, Metepec, México, C.P. 52149.
Get access

Abstract

The present study investigates the adsorption of fluorides (F) by a hydrotalcite MgFe (HT MgFe) and an iron-based metal oxide (MgFe oxide). Both materials were synthesized by the coprecipitation method and were calcined at the same temperature HT MgFe, HTC MgFe, oxide MgFe and oxide MgFeC. Both solids were characterized by the XRD technique. Materials showed typical crystalline forms; in the case of HT MgFe, an octahedral crystalline form and for the oxide MgFe cubic crystalline form, the analysis of the BET method classifies the materials as mesoporous. In the adsorption study, it was determined that the optimal pH for adsorption is 7. Regarding the adsorption kinetics, the HTC MgFe and oxide MgFeC samples were adjusted to the pseudo-second order model, which describes the process as chemiadsorption; meanwhile, for the samples, isotherms were adjusted to the Langmuir model, which describes the material as homogeneous with a strong interaction between the sorbate and the sorbent.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Valdez Jiménez, L., López Guzmán, O. D., Cervantes Flores, M., Costilla-Salazar, R., Calderón Hernández, J., Alcaraz Contreras, Y. and Rocha-Amadord, D.O.. Neurotoxicology 59, 65-70 (2017).CrossRefGoogle Scholar
Mukherjee, S. and Halder, G.. Environ, J.. Eng.-ASCE 6, 1257-1270, (2018).Google Scholar
Zhenzhen, S., Gao, H., Zhanga, W., Wang, D.. Water, J.. Process Eng 36, 101399, (2020).Google Scholar
Maderuelo, R., López, R., Jiménez, J. A., García, C., Moreno, R. and Maireles, P.. Appl. Clay Sci, 183, (2019).Google Scholar
Rosset, M., Sfreddo, L., Hidalgo, W., Perez-Lopez, N. and Féris, L.. Appl. Clay Sci, 150158, (2019).CrossRefGoogle Scholar
Contreras-Ruiz, J. C., Martínez-Gallegos, M. S. and Ordoñez-Regil, E.. Mater. Charact. 17-22, (2016).CrossRefGoogle Scholar
Gao, M., Wang, W., Yang, H., Ye, B. C.. Chem. Eng. J. 380, 122459, (2020).CrossRefGoogle Scholar
Kang, J., Levitskaia, T. G., Park, S., Kim, J. and Varga, T.. Chem. Eng. J, 380, 122408, (2020).CrossRefGoogle Scholar
Ho, Y. S., & McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 34(5), 451465, (1999).CrossRefGoogle Scholar
Ma, R., Zhua, J., Wua, B. and Li, X., Chem. Eng. Res Design. 114, 321, (2016).CrossRefGoogle Scholar
Kwon, D., Kang, J. Y., An, S., Yang, I. and Jung, J. C.. J. Energy Chem. 46, 229-236, (2020)CrossRefGoogle Scholar
Velazquez, G., Olguín, M. T. and Solache, M. J.. J. Fluor. Chem. 202, 41-53, (2017).CrossRefGoogle Scholar
Wang, X., Chengxiang, C., Wu, Y., Deng, Y., Zhou, J., Yang, M., Zhang, S., Huo, D. and Hou, C.. Sens. Actuator B-Chem. 321, 128455, (2020).CrossRefGoogle Scholar
Hassan, R. S., Eid, M. A., El-Sadek, A. A., and Mansy, M. S.. Appl. Radiat. Isot, 7480, (2019).CrossRefGoogle Scholar
Thankachan, S., Femsy, M.V. and John, N.. Mater. Today 25, 289-293, (2020).Google Scholar
Ghanbarian, M., Ghanbarian, M., Hossein, A., Tabatabaie, T.. Int. J. Biol. Sci. 148. 574-590, (2020)Google Scholar
Rosset, M., Sfreddo, G. E. Navarro, O. W. Perez-Lopez, L. Amaral, . Appl. Clay Sci 175, 150-158, (2020).CrossRefGoogle Scholar
Raghav, S., Nehra, S. and Kumar, D.. J. Mol. Liq. 284, 203-214, (2019).CrossRefGoogle Scholar