Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T17:56:15.330Z Has data issue: false hasContentIssue false

Finite-Temperature Behavior of PdHx Elastic Constants Computed by Direct Molecular Dynamics

Published online by Cambridge University Press:  30 May 2017

X. W. Zhou*
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, U.S.A
T. W. Heo
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, U.S.A.
B. C. Wood
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, U.S.A.
V. Stavila
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, U.S.A
S. Kang
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, U.S.A.
M. D. Allendorf
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, U.S.A
*
Get access

Abstract

Robust time-averaged molecular dynamics has been developed to calculate finite-temperature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH0.6 only match well with ultrasonic data at 10 K; whereas, at 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Literature mechanical testing experiments seem to support this hypothesis.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schwarz, R. B., Bach, H. T., Harms, U., and Tuggle, D., Acta Mater. 54, 569 (2005).CrossRefGoogle Scholar
Safarik, D. G., Schwarz, R. B., Paglieri, S. N., Quintana, R. L., Tuggle, D. G., and Byler, D. D., Ultrasonics. 50, 155 (2010).CrossRefGoogle Scholar
Hsu, D. K. and Leisure, R. G., Phys. Rev. B 20, 1339 (1979).CrossRefGoogle Scholar
Eissa, E. A. and Kazi, A., Int. J. Rock Mech. Sci. Geomech. Abstr. 25, 479 (1988).CrossRefGoogle Scholar
Mockovciakova, A. and Pandula, B., METABK 42, 37 (2003).Google Scholar
Goods, S. H. and Guthrie, S. E., Scripta Metall. Mater. 26, 561 (1992).Google Scholar
Meyers, M. T., Rickman, J. M., and Delph, T. J., J. App. Phys. 98, 066106 (2005).CrossRefGoogle Scholar
Cagin, T. and Pettitt, B. M., Phys. Rev. B 39, 12484 (1989).Google Scholar
Zhong, W., Cai, Y., and Tomanek, D., Phys. Rev. B 46, 8099 (1992).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., Zimmerman, J. A., Cruz-Campa, J. L., Zubia, D., Martin, J. E., and van Swol, F., J. Mech. Phys. Solids 91, 265 (2016).CrossRefGoogle Scholar
Greathouse, J. A. and Allendorf, M. D., J. Phys. Chem. C 112, 5795 (2008).CrossRefGoogle Scholar
Foiles, S. M. and Hoyt, J. J., SAND2001–0661. Sandia National Laboratories. 2001.Google Scholar
Zhou, X. W. and Zimmerman, J. A., J. Mater. Res. 23, 704 (2008).CrossRefGoogle Scholar
Nye, F., Physical Properties of Crystals, Oxford University Press Inc., New York, U. S. A., 1985.Google Scholar