Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T06:13:32.907Z Has data issue: false hasContentIssue false

Facile and Scalable Synthesis of Copolymer-Sulfur Composites as Cathodes for High Performance Lithium-Sulfur Batteries

Published online by Cambridge University Press:  21 June 2017

Jingjing Liu
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
Brennan Campbell
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
Rachel Ye
Affiliation:
Mechanical Engineering Department, University of California, Riverside, CA, 92521, USA
Jeffrey Bell
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
Zafer Mutlu
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
Changling Li
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
Yiran Yan
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
Mihri Ozkan
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA Electrical and Computer Engineering Department, University of California, Riverside, CA, 92521, USA
Cengiz Ozkan*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA Mechanical Engineering Department, University of California, Riverside, CA, 92521, USA
*
Get access

Abstract

To promote the energy density of lithium-ion battery, the sulfur-based cathode has attracted extensive attention because of its high specific capacity of 1672 mAh g-1 and its high abundance. However, the sulfur shuttling effects and the loss of active material during lithiation hinder its commercial application. To tackle these issues, we synthesized a stable copolymer-sulfur composite by chemically binding sulfur. The composite with 86% sulfur content was prepared using 1,3-diethynylbenzen and sulfur particles via scalable invers vulcanization. The sulfur content in copolymer sulfur was achieved as high as 86%. Our copolymer-sulfur composite cathode showed excellent cycling performance with a specific capacity of 454 mAh g-1 at 0.1 C after 300 cycles. We demonstrate that the organosulfur-DEB units in the copolymer-sulfur composite serve as the ‘plasticizer’ to effectively prevent the polysulfide shuttling.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, W., Favors, Z., Li, C., Liu, C., Ye, R., Fu, C., Bozhilov, K., Guo, J., Ozkan, M. and Ozkan, C. S., Sci. Rep. 7, 44838 (2017).Google Scholar
Liu, C., Li, C., Ahmed, K., Wang, W., Lee, I., Zaera, F., Ozkan, C. S. and Ozkan, M., RSC Adv. 6(85), 8171281718 (2016).Google Scholar
Li, C., Liu, C., Wang, W., Bell, J., Mutlu, Z., Ahmed, K., Ye, R., Ozkan, M. and Ozkan, C. S., Chem. Commun. 52 (76), 1139811401 (2016).Google Scholar
Li, C., Liu, C., Wang, W., Mutlu, Z., Bell, J., Ahmed, K., Ye, R., Ozkan, M. and Ozkan, C. S., Sci. Rep. 7 (1), 917 (2017).CrossRefGoogle Scholar
Liu, C., Li, C., Wang, W., Ozkan, M. and Ozkan, C. S., Ener. Tech. 5 (3), 422427 (2017).Google Scholar
Liu, C., Li, C., Ahmed, K., Mutlu, Z., Ozkan, C. S. and Ozkan, M., Sci. Rep. 6, 29183 (2016).CrossRefGoogle Scholar
Liu, C., Li, C., Ahmed, K., Wang, W., Lee, I., Zaera, F., Ozkan, C. S. and Ozkan, M., Adv. Mater. Interf. 3 (6), 1500503 (2016).CrossRefGoogle Scholar
Fergus, J. W., J. Power Sources 195 (4), 939954 (2010).CrossRefGoogle Scholar
Yang, Y., Zheng, G. and Cui, Y., Chem. Soc. Rev. 42 (7), 30183032 (2013).Google Scholar
Liang, C., Dudney, N. J. and Howe, J. Y., Chem. of Mater. 21 (19), 47244730 (2009).Google Scholar
Zheng, G., Zhang, Q., Cha, J. J., Yang, Y., Li, W., Seh, Z. W. and Cui, Y., Nano lett. 13 (3), 12651270 (2013).Google Scholar
Evers, S. and Nazar, L. F., Chem. Commun. 48 (9), 12331235 (2012).Google Scholar
Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Cui, Y. and Dai, H., Nano lett. 11 (7), 26442647 (2011).Google Scholar
Wang, J.-Z., Lu, L., Choucair, M., Stride, J. A., Xu, X. and Liu, H.-K., J. Power Sources 196 (16), 70307034 (2011).CrossRefGoogle Scholar
Li, W., Zheng, G., Yang, Y., Seh, Z. W., Liu, N. and Cui, Y., Proc. Acad. Sci.U. S. A. 110 (18), 71487153 (2013).Google Scholar
Zhou, W., Xiao, X., Cai, M. and Yang, L., Nano lett. 14 (9), 52505256 (2014).Google Scholar
Chung, W. J., Griebel, J. J., Kim, E. T., Yoon, H., Simmonds, A. G., Ji, H. J., Dirlam, P. T., Glass, R. S., Wie, J. J., Nguyen, N. A., Guralnick, B. W., Park, J., SomogyiÁrpád, P. Theato, Mackay, M. E., Sung, Y.-E., Char, K. and Pyun, J., Nat. Chem. 5 (6), 518524 (2013).Google Scholar
Simmonds, A. G., Griebel, J. J., Park, J., Kim, K. R., Chung, W. J., Oleshko, V. P., Kim, J., Kim, E. T., Glass, R. S., Soles, C. L., Sung, Y.-E., Char, K. and Pyun, J., ACS Macro Lett. 3 (3), 229232 (2014).Google Scholar
Griebel, J. J., Li, G., Glass, R. S., Char, K. and Pyun, J., J. Polym. Sci. A: Polym. Chem. 53 (2), 173177 (2015).CrossRefGoogle Scholar
Dirlam, P. T., Simmonds, A. G., Kleine, T. S., Nguyen, N. A., Anderson, L. E., Klever, A. O., Florian, A., Costanzo, P. J., Theato, P., Mackay, M. E., Glass, R. S., Char, K. and Pyun, J., RSC Adv. 5 (31), 2471824722 (2015).Google Scholar
Talapaneni, S. N., Hwang, T. H., Je, S. H., Buyukcakir, O., Choi, J. W. and Coskun, A., Angew. Chem. 55 (9), 31063111 (2016).Google Scholar
Sun, Z., Xiao, M., Wang, S., Han, D., Song, S., Chen, G. and Meng, Y., J. Mater. Chem. A 2 (24), 9280 (2014).Google Scholar
NIST X-ray Photoelectron Spectroscopy Database (NIST Standard Reference Database 20, Version 4.1). Available at https://srdata.nist.gov/xps/Default.aspx (accessed at April 2017).Google Scholar
Zhou, G., in Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries: Next-Generation High Performance Lithium–Sulfur Batteries (Springer Singapore, Singapore, 2017), pp. 5774.Google Scholar
Fu, Y. and Manthiram, A., RSC Adv. 2 (14), 5927 (2012).CrossRefGoogle Scholar
Li, Y., Li, Z., Zhang, Q. and Shen, P. K., J. Mater. Chem. A 2 (13), 4528 (2014).Google Scholar