Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:42:11.216Z Has data issue: false hasContentIssue false

Epitaxial Growth and Bandgap Control of Ni1-xMgxO Thin Film Grown by Mist Chemical Vapor Deposition Method

Published online by Cambridge University Press:  21 April 2020

Takumi Ikenoue*
Affiliation:
Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Satoshi Yoneya
Affiliation:
Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Masao Miyake
Affiliation:
Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Tetsuji Hirato
Affiliation:
Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
*
Get access

Abstract

Wide-bandgap oxide semiconductors have received significant attention as they can produce devices with high output and breakdown voltage. p-Type conductivity control is essential to realize bipolar devices. Therefore, as a rare wide-bandgap p-type oxide semiconductor, NiO (3.7 eV) has garnered considerable attention. In view of the heterojunction device with Ga2O3 (4.5–5.0 eV), a p-type material with a large bandgap is desired. Herein, we report the growth of a Ni1-xMgxO thin film, which has a larger bandgap than NiO, on α-Al2O3 (0001) substrates that was developed using the mist chemical vapor deposition method. The Ni1-xMgxO thin films epitaxially grown on α-Al2O3 substrates showed crystallographic orientation relationships identical to those of NiO thin films. The Mg composition of Ni1-xMgxO was easily controlled by the Mg concentration of the precursor solution. The Ni1-xMgxO thin film with a higher Mg composition had a larger bandgap, and the bandgap reached 3.9 eV with a Ni1-xMgxO thin film with x = 0.28. In contrast to an undoped Ni1-xMgxO thin film showing insulating properties, the Li-doped Ni1-xMgxO thin film had resistivities of 101–105 Ω∙cm depending on the Li precursor concentration, suggesting that Li effectively acts as an acceptor.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Shinohara, D. and Fujita, S., Jpn. J. Appl. Phys. 47, 7311-7313 (2008). doi:10.1143/JJAP.47.7311.CrossRefGoogle Scholar
Kuzmin, A. and Mironova, N., J. Phys. Condens. Matter. 10, 7937-7944 (1998). doi:10.1088/0953-8984/10/36/004.CrossRefGoogle Scholar
Roessler, D.M. and Walker, W.C., Phys. Rev. 159, 733-738 (1967). doi:10.1103/PhysRev.159.733.CrossRefGoogle Scholar
Mares, J.W., Boutwell, C.R., Scheurer, A., Falanga, M. and Schoenfeld, W. V., Proc. SPIE 7603, 76031B (2010). doi:10.1117/12.841327.CrossRefGoogle Scholar
Guo, Y.M., Zhu, L.P., Jiang, J., Hu, L., Ye, C.L. and Ye, Z.Z., Appl. Phys. Lett. 101, 052109 (2012). doi:10.1063/1.4742172.CrossRefGoogle Scholar
Boutwell, R.C., Wei, M., Scheurer, A., Mares, J.W. and Schoenfeld, W.V., Thin Solid Films 520, 4302-4304 (2012). doi:10.1016/j.tsf.2012.02.065.CrossRefGoogle Scholar
Ikenoue, T., Inoue, J., Miyake, M. and Hirato, T., J. Cryst. Growth. 507, 379-383 (2019). doi:10.1016/j.jcrysgro.2018.11.032.CrossRefGoogle Scholar
Nishinaka, H., Kamada, Y., Kameyama, N. and Fujita, S., Phys. Status Solidi. 247, 1460-1463 (2010). doi:10.1002/pssb.200983247.CrossRefGoogle Scholar
Kaneko, K., Onuma, T., Tsumura, K., Uchida, T., Jinno, R., Yamaguchi, T., Honda, T. and Fujita, S., Appl. Phys. Express 9, 111102 (2016). doi:10.7567/APEX.9.111102.CrossRefGoogle Scholar
Ito, H., Kaneko, K. and Fujita, S., Jpn. J. Appl. Phys. 51, 100207 (2012). doi:10.1143/JJAP.51.100207.CrossRefGoogle Scholar
Nishinaka, H., Kamada, Y., Kameyama, N. and Fujita, S., Jpn. J. Appl. Phys. 48, 121103 (2009). doi:10.1143/JJAP.48.121103.CrossRefGoogle Scholar
Akaiwa, K. and Fujita, S., Jpn. J. Appl. Phys. 51, 070203 (2012). doi:10.1143/JJAP.51.070203.Google Scholar
Suzuki, N., Kaneko, K. and Fujita, S., J. Cryst. Growth. 364, 30-33 (2013). doi:10.1016/j.jcrysgro.2012.11.065.CrossRefGoogle Scholar
Yang, Z.-G., Zhu, L.-P., Guo, Y.-M., Ye, Z.-Z. and Zhao, B.-H., Thin Solid Films 519, 5174-5177 (2011). doi:10.1016/j.tsf.2011.01.082.CrossRefGoogle Scholar
Zhao, Y., Zhang, J., Jiang, D., Shan, C., Zhang, Z., Yao, B., Zhao, D. and Shen, D., J. Phys. D. Appl. Phys. 42, 092007 (2009). doi:10.1088/0022-3727/42/9/092007.CrossRefGoogle Scholar
Nishitani, H., Ohta, K., Kitano, S., Hamano, R., Inada, M., Shimizu, T., Shingubara, S., Kozuka, H. and Saitoh, T., Appl. Phys. Express 9, 039201 (2016). doi:10.7567/APEX.9.039201.CrossRefGoogle Scholar
Niedermeier, C.A., Råsander, M., Rhode, S., Kachkanov, V., Zou, B., Alford, N. and Moram, M.A., Sci. Rep. 6, 31230 (2016). doi:10.1038/srep31230.CrossRefGoogle Scholar