Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:54:20.410Z Has data issue: false hasContentIssue false

Enhanced catalytic activity of low-Pt content nanocatalysts supported on hollow carbon spheres for the ORR in alkaline media

Published online by Cambridge University Press:  09 October 2020

P.C. Meléndez-González
Affiliation:
Nanociencias y Nanotecnología, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila, C.P25900, México
E. Garza-Duran
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo
J.C. Martínez-Loyola
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo
P. Quintana-Owen
Affiliation:
Centro de Investigación y de estudios Avanzados del IPN Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apto. Postal 73, Cordomex, C.P. 97310, Mérida, Yuc., México
I.L. Alonso-Lemus
Affiliation:
CONACYT-Cinvestav Unidad Saltillo. Sustentabilidad de los Recursos Naturales y Energía
F.J. Rodríguez-Varela*
Affiliation:
Nanociencias y Nanotecnología, Cinvestav Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe. Ramos Arizpe, Coahuila, C.P25900, México Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo
*
Get access

Abstract

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dekel, D. R., J. Power Sources 375, 158 (2018).CrossRefGoogle Scholar
Ganesan, A. and Narayanasamy, M., Mater. Renew. Sustain. Energy 8, 18 (2019).CrossRefGoogle Scholar
Antolini, E., Appl. Catal. B Environ. 88, 1 (2009).CrossRefGoogle Scholar
Bharti, A. and Cheruvally, G., “Application of Novel Carbonaceous Materials as Support for Fuel Cell Electrocatalysts”, Advanced Electrocatalysts for Low-Temperature Fuel Cells, ed. Rodríguez-Varela, F.J. and Napporn, T.W. (Springer International Publishing, 2018) pp. 175213.CrossRefGoogle Scholar
Wen, Z., Wang, Q., Zhang, Q., and Li, J., Electrochem. Commun. 9, 1867 (2007).CrossRefGoogle Scholar
Kim, J. H., Fang, B., Yoon, S. B., and Yu, J. S., Appl. Catal. B Environ. 88, 368 (2009).CrossRefGoogle Scholar
Sanetuntikul, J., Chuaicham, C., Choi, Y.-W., and Shanmugam, S., J. Mater. Chem. A 3, 15473 (2015).CrossRefGoogle Scholar
Fıçıcılar, B., Bayrakçeken, A., and Eroğlu, I., Int. J. Hydrogen Energy 35, 9924 (2010).CrossRefGoogle Scholar
Wu, J., Jin, C., Yang, Z., Tian, J., Yang, R., Carbon 82, 562 (2015).CrossRefGoogle Scholar
Hu, F., Yang, H., Wang, C., Zhang, Y., Lu, H., Wang, Q., Small 13, 1602507 (2017).CrossRefGoogle Scholar
Guan, B., Yu, L.. Wen, X.. Adv. Sci. 4, 1700247 (2017).CrossRefGoogle Scholar
Sanetunkul, J., Hang, T., Shanmugam, S.. Chem. Commun. 50, 9473 (2014).CrossRefGoogle Scholar
Hao, M., Dun, R., Su, Y., Li, W.. Nanoscale 12, 15115 (2020).CrossRefGoogle Scholar
Lebègue, E., Baranton, S., and Coutanceau, C., J. Power Sources 196, 920 (2011).CrossRefGoogle Scholar
Hwang, B. J., Kumar, S. M. S., Chen, C.-H., Monalisa, M.-Y. Cheng, D.-G. Liu, and J.-F. Lee, , J. Phys. Chem. C 111, 15267 (2007).CrossRefGoogle Scholar
Brimaud, S., Coutanceau, C., Garnier, E., Léger, J.-M., Gérard, F., Pronier, S., and Leoni, M., J. Electroanal. Chem. 602, 226 (2007).CrossRefGoogle Scholar
Holade, Y., Servat, K., Napporn, T.W., and Kokoh, K. B., Electrochim. Acta 162, 205 (2015).CrossRefGoogle Scholar
Siller-Ceniceros, A. A., Sánchez-Castro, M. E., Morales-Acosta, D., Torres-Lubian, J. R., Martínez G, E.., and Rodríguez-Varela, F.J., Appl. Catal. B Environ. 209, 455 (2017).CrossRefGoogle Scholar
Dessources, S., Morais, C., Napporn, T. W., and Kokoh, K. B., Chem. Phys. Chem. 17, 3964 (2016).CrossRefGoogle Scholar
Hernández-Ramírez, A., Sánchez-Castro, M. E., Alonso-Lemus, I., Aruna, Kalasapurayil Kunhiraman, Karthikeyan, Palanisamy, Manoharan, Ramasamy and Rodríguez-Varela, F. J., J. Electrochem. Soc. 163, F16 (2016).CrossRefGoogle Scholar
Wang, Y., Alsmeyer, D.C., and McCreery, R., Chem Matter. 2, 557 (1990).CrossRefGoogle Scholar
Dong, Y., Deng, Y., Zeng, J., Song, H., Liao, S., J. Mater. Chem. A 5, 5829 (2017).CrossRefGoogle Scholar
He, B., Liu, F., Liu, Y., and Yan, S., Electrochim. Acta 324, 134869 (2019).CrossRefGoogle Scholar
Ramaswamy, N., Mukerjee, S., Adv. Phys. Chem., 2012 (2012).CrossRefGoogle Scholar
Gasteiger, H. A., Kocha, S. S., Sompalli, B., and Wagner, F. T., Appl. Catal. B Environ. 56, 9 (2005).CrossRefGoogle Scholar
Yan, Z., Xie, J., Zong, S., Zhang, M., Sun, Q., and Chen, M., Electrochim. Acta 9, 256 (2013).CrossRefGoogle Scholar
Wang, J., Cui, Y., and Wang, D., Adv. Mater. 31, 1801993 (2019).CrossRefGoogle Scholar