Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T04:58:02.408Z Has data issue: false hasContentIssue false

Electrochemical Evaluation of a Discontinuously Reinforced TiC/Ni-20Cr Composite

Published online by Cambridge University Press:  28 January 2020

Rocio J. Gonzalez-Esquivel
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mujica S/N Ciudad Universitaria, Morelia 58030, Mich., Méxic.
Carlos A. Leon-Patiño*
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mujica S/N Ciudad Universitaria, Morelia 58030, Mich., Méxic.
Ricardo Galvan-Martinez
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana Av. S.S. Juan Pablo II. S/N, Zona Universitaria, Fracc. Costa Verde. CP. 94294, Veracruz, Veracruz, México.
Ena A. Aguilar-Reyes
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mujica S/N Ciudad Universitaria, Morelia 58030, Mich., Méxic.
*
Get access

Abstract

The work focuses on the analysis of electrochemical corrosion in synthetic salt medium of the TiC/Ni-20Cr composite through the polarization curve technique at four exposure times (0, 6, 12 and 24 h). The composite was prepared by liquid infiltration of the liquid alloy into a porous body of TiC. It was found a continuous and homogeneous distribution of the reinforcing material in the interconnected matrix, having a residual porosity of 6.49 vol.%. According to the electrochemical results, in both samples the highest corrosion rate (CR) was obtained at 12 h exposure due to the rupture of the film of the corrosion products, allowing the interaction of chloride ions with the metal surface. The CR of the composite was slightly higher than that of the alloy at all exposure times, so that the presence of the reinforcing particles and the residual porosity reduce the corrosion resistance of the matrix in the composite. The mechanism of corrosion observed in the alloy and the composite was by pitting, however, the composite also presents crevice corrosion by a differential aeration cell mechanism formed between the metal matrix and the ceramic reinforcement, affected by the residual porosity as confirmed by electron microscopy examination.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reed, R. C., The superalloys fundamentals and applications , (Cambridge University Press, Cambridge, 2006), p.33.CrossRefGoogle Scholar
Duran, J. M., Orozco, R., Galvan, R., Leon, C. A., Contreras, A., MRS Advances 2, 2865 (2017).CrossRefGoogle Scholar
Leon, C. A., Braulio, M., Aguilar, E. A., Bedolla, E., J. Alloy. Compd. 792 , 1102 (2019).CrossRefGoogle Scholar
Leon, C. A., Braulio, M., presented at the 8th Meeting of the Mexican Section ECS, Boca del Río, Ver, 2015 (unpublished).Google Scholar
Leon, C. A., Braulio, M., Aguilar, E. A., Bedolla, E., Bedolla, A., Wear. 426-427, 989 (2019).CrossRefGoogle Scholar
Qi, Q., Li, Y., Huang, Z., Scr. Mater. 109, 56 (2015).CrossRefGoogle Scholar
Contreras, A., López, V. H., Bedolla, E., Scr. Mater. 51 (3), 249-253 (2004).CrossRefGoogle Scholar
Asthana, R., Mileiko, S. T., Sobcza, N., Bull. Pol. Acad. Sci.-Tech. Sci. 54 (2), 147-166 (2006).Google Scholar
Mishra, A. K., Shoesmith, D. W., Corrosion. 70 (7), 721-730 (2014).CrossRefGoogle Scholar
Bakkar, A., Ahmed, M. Z., Alsalehd, N. A., Selemana, M., Ataya, S., J. Mater. Res. Techol. 8 (1), 1102-1110 (2019).CrossRefGoogle Scholar
Zhang, L., Shi, N., Gong, J., Sun, C.. J. Mater. Res. Techol. 28 (3), 234-240 (2011).Google Scholar
Ter, B., Alemany, C., Normand, B., Electrochim. Acta. 133 , 373 (2014).Google Scholar
Albiter, A., Contreras, A., Salazar, M., Gonzalez, J. G., J. Appl. Electrochem. 36 , 303 (2005).CrossRefGoogle Scholar
Nickel-Chromium (Ni-Cr) Phase Diagram. Available at http://www.calphad.com/nickel-chromium.html (accessed 22 October 2019).Google Scholar
ASTM D-1141-2013 Standard Practice for the Preparation of Substitute Ocean Water. West Conshohocken, PA, 2013.Google Scholar
Cabrera De La Cruz, D., León Patiño, C. A., Galván Martínez, R.. Materia. 22 (3), e-12049 (2018).Google Scholar
ASTM D-G1-2011 Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens, West Conshohocken, PA, 2019Google Scholar
Benea, L., Bonora, P. L., Borelllo, A., Martelli, S., Wear. 249 , 995 (2002).CrossRefGoogle Scholar
Jauregui, K., Veleva, L., Bolio, G. I., Lopez, D. A., Cienc. Tecnol. 9 (4), 9-17 (2013).Google Scholar
Hayes, J. R., Gray, J. J., Szmodis, A. W., Orme, C. A., J. Electrochem. Soc. 62 (6), 491-500 (2006).Google Scholar