Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:32:55.144Z Has data issue: false hasContentIssue false

Electrochemical Assessment of X70 Steel With Non-Conventional Heat Treatment

Published online by Cambridge University Press:  05 September 2017

L. R. Jacobo
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, C.P.58030, Morelia, Michoacán, México.
R. García
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, C.P.58030, Morelia, Michoacán, México.
V.H. López
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N Ciudad Universitaria, C.P.58030, Morelia, Michoacán, México.
A. Contreras*
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, C.P.07730, México.
Get access

Abstract

Corrosion behavior of an API X70 steel by potentiodynamic polarization curves was carried out. X70 steel was heat treated at a temperature of 1050°C (onset temperature solution of niobium carbonitrides) for 15 and 30 minutes hold followed by quenching in water. Test solutions for electrochemical evaluation were NS4 solution and congenital water (CW) to assess external and internal corrosion pipelines respectively. The polarization curves were performed within a range of -500mV to 1000mV for NS4 solution and the -500mV to 600mV by congenital water respect to open circuit potential (OCP) at a scan rate of 1mV/s. The tests were conducted at room temperature. The surfaces of the samples were observed by scanning electron microscope (SEM). A localized corrosion type was observed. According to polarization curves it can be observed that oxidation reaction in the anodic branch belongs to a charge transfer process. Cathodic branches reveal a process where the charge transfer resistance is influenced by a process of mass transfer. The non-conventional heat treatment improved the corrosion resistance compared to as received material.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhu, Z., Kuzmikova, L., Li, H., Barbaro, F.. Material Science and Engineering A, 605, 813 (2014).Google Scholar
Lucio García, M.A., González Rodríguez, J.G., Casales, M., Martínez, L., Chacón Nava, J.G., Neri Flores, M.A., Martínez Villafañe, A.. Corrosion Science, 51, 23802386 (2009).CrossRefGoogle Scholar
Yong Shin, S., Hwang, B., Lee, S., Kim, N. J., Soo Ahn, S.. Material Science and Engineering A, 458, 281289 (2007).Google Scholar
Moeinifar, S., Kokabi, A.H., Hosseini, H. M.. Journal of Materials Processing Technology, 211, 368375 (2011).Google Scholar
Beidokhti, B., Dolati, A., Koukabi, A.H.. Material Science and Engineering A, 507, 167173. (2009).Google Scholar
Park, G. T., Koh, S.U., Jung, H.G., Kim, K.Y.. Corrosion Science, 50, 18651871 (2008).Google Scholar
Sadeghi, E., Shahrabi, T., Neshati, J.. Corrosion Science, 54, 3644 (2012).Google Scholar
Narimani, N., Zarei, B., Pouraliakbar, H., Khalaj, G.. Measurement, 62, 97107 (2015).CrossRefGoogle Scholar
Zhang, G. A., Cheng, Y. F.. Electrochimica Acta, 56, 16761685 (2011).Google Scholar
Fu, A. Q., Tang, X., Cheng, Y. F.. Corrosion Science, 51, 186190 (2009).CrossRefGoogle Scholar
Irvine, K.J., Pickering, F.B., Gladman, T.. J. of the Iron and Steel Institute, 205, 81102 (1967).Google Scholar
Sung, H. K., Shin, S. Y., Cha, W., Oh, K., Lee, S., Kim, N.. Material Science and Engineering A, 528, 33503357 (2011).Google Scholar
Hwang, B., Kim, Y. G., Lee, S., Kim, Y. M., Kim, N. J., Yoo, J. Y.. Metallurgical and Materials Transactions, 36A, 21072114 (2005).Google Scholar
Fang, Y.. Journal of Materials Science, 38, 127132 (2003).CrossRefGoogle Scholar
Stegmann, D. W., Hausler, R. H., Cruz, C. I., Sutanto, H.. Corrosion, Paper No. 5, Houston, NACE International (1990).Google Scholar
Ueda, M., Takabe, H.. Corrosion, Paper No. 13, Houston, NACE International. (1999).Google Scholar
Sherif, El-Sayed M., Almajid, A. A.. International Journal of Electrochemical science, 10, 3445 (2015).Google Scholar
Benmoussa, A., Hadjel, M., Traisnel, M.. Materials and Corrosion, 57, 771777 (2006).Google Scholar
Henriques, M., Pebere, N., Ochoa, N., Viloria, A.. Corrosion, 69, 1711179 (2013).Google Scholar
Sherif, E.M., Park, S.M.. Electrochimica Acta, 51, 65566562 (2006).Google Scholar
Perez, N., Electrochemistry and Corrosion Science, 1th ed. USA: WKAP (2004).Google Scholar
Fan, M. M., Li, H. F., Dong, Z. H.. Materials and Corrosion, 64, 242246 (2013).Google Scholar
Li, M. C., Cheng, Y. F.. Electrochimica Acta, 53, 28312836 (2008).CrossRefGoogle Scholar