Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:58:00.387Z Has data issue: false hasContentIssue false

Effect of Li, Fe, and B Addition on the Crystallization Behavior of Sodium Aluminosilicate Glasses as Analogues for Hanford High Level Waste Glasses

Published online by Cambridge University Press:  19 December 2016

José Marcial
Affiliation:
Materials Science and Engineering Program, Washington State University, Pullman, WA 99164, USA
Mostafa Ahmadzadeh
Affiliation:
Materials Science and Engineering Program, Washington State University, Pullman, WA 99164, USA
John S. McCloy*
Affiliation:
Materials Science and Engineering Program, Washington State University, Pullman, WA 99164, USA School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
*
Get access

Abstract

Crystallization of aluminosilicates during the conversion of Hanford high-level waste (HLW) to glass is a function of the composition of the glass-forming melt. In high-sodium, high-aluminum waste streams, the crystallization of nepheline (NaAlSiO4) removes chemically durable glass-formers from the melt, leaving behind a residual melt that is enriched in less durable components, such as sodium and boron. We seek to further understand the effect of lithium, boron, and iron addition on the crystallization of model silicate glasses as analogues for the complex waste glass. Boron and iron behave as glass intermediates which allow for crystallization when present in low additions but frustrate crystallization in high additions. In this work, we seek to compare the average structures of quenched and heat treated glasses through Raman spectroscopy, X-ray diffraction, vibrating sample magnetometry, and X-ray pair distribution function analysis. The endmembers of this study are feldspathoid-like (LiAlSiO4, NaAlSiO4, NaBSiO4, and NaFeSiO4), pyroxene-like (LiAlSi2O6, NaAlSi2O6, NaBSi2O6, and NaFeSi2O6), and feldspar-like (LiAlSi3O8, NaAlSi3O8, NaBSi3O8, and NaFeSi3O8). Such a comparison will provide further insight on the complex relationship between the average chemical ordering and topology of glass on crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kruger, A.A., Advances in Glass formulations for Hanford High-Alumina, High-Iron and Enhanced Sulphate Management in HLW streams – 13000, Department of Energy, Office of River Protection, Richland, WA, ORP-54302-FP (2013).Google Scholar
Riley, B.J., Hrma, P., Rosario, J. and Vienna, J.D., In Ceramic Transactions Vol. 132, Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VII, edited by Smith, G. L., Sundaram, S. K. and Spearing, D. R., (The American Ceramic Society, Westerville, OH, 2001), pp. 257.Google Scholar
Jantzen, C.M. and Bickford, D.E. in Scientific basis for Nuclear Waste Management VIII, edited by Jantzen, C. M., Stone, J. A. and Ewing, R. C., (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), pp. 135.Google Scholar
Marcial, J., Crum, J., Neill, O. and McCloy, J., Amer. Mineral. 101, 266 (2016).Google Scholar
Marcial, J., McCloy, J. and Neill, O. in Scientific Basis for Nuclear Wate Management XXXVIII, edited by Gin, S., Jubin, R., Matyas, J. and Vance, E., (Proc. Mater. Res. Soc. Symp. 1744, Boston, MA, 2015), pp. 85.Google Scholar
McCloy, J., Washton, N., Gassman, P., Marcial, J., Weaver, J. and Kukkadapu, R., J. Non-cryst. Solids 409, 149 (2015).Google Scholar
McCloy, J.S., Rodriguez, C., Windisch, C., Leslie, C., Schweiger, M.J., Riley, B.R. and Vienna, J.D., In Ceramic Transactions, Vol. 222, Advances in Materials Science for Environmental and Nuclear Technology, edited by Fox, K. M., Hoffman, E. N., Manjooran, N. and Pickrell, G., (John Wiley & Sons, Inc., Hoboken, NJ, 2010), pp. 63.Google Scholar
Rose, P.B., Woodward, D.I., Ojovan, M.I., Hyatt, N.C. and Lee, W.E., J. Non-cryst. Solids 357, 2989 (2011).Google Scholar
Deer, W.A., Howie, R.A., Wise, W.S. and Zussman, J., Editors,Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, 2nd ed. (The Geological Society, London, 2004).Google Scholar
In An Introduction to Rock-Forming Minerals, edited by Deer, W. A., Howie, R. A. and Zussman, J., (Addison-Wesley Longman, London, 1992), pp. 473.Google Scholar
Marcial, J., Kabel, J., Saleh, M., Shaharyar, Y., Goel, A. and McCloy, J., Proc. Waste Manag. Conf. 16323 (2016).Google Scholar
Qiu, X., Thompson, J.W. and Billinge, S.J.L., J. Appl. Cryst. 37, 1 (2004).Google Scholar
Wojdyr, M., J. Appl. Cryst. 43, 3 (2010).Google Scholar
Thompson, J.G., Withers, R.L., Melnitchenko, A. and Palethorpe, S.R., Acta Cryst. B 54, 531 (1998).Google Scholar
Withers, R.L., Thompson, J.G., Melnitchenko, A. and Palethorpe, S.R., Acta Cryst. B 54, 547 (1998).Google Scholar
Winkler, H.G.F., Golden Book of Phase Transitions, Wroclaw 1, 122 (2002).Google Scholar
Levy, D., Guistetto, R. and Andreas, H., Phys. Chem. Miner. 39, 8 (2012).Google Scholar
Schouwink, P., Dubrovinsky, L., Glazyrin, K., Merlini, M., Hanfland, M., Pippinger, T. and Miletich, R., Am. Mineral. 96, 6 (2011).Google Scholar
Buerger, M.J., Klein, G.E. and Hamburger, G.E., Bull. Geol. Soc. Amer. 57, 2 (1946).Google Scholar
Momma, K. and Izumi, F., J. Appl. Crystallogr. 44, 4 (2011).CrossRefGoogle Scholar
Taylor, M. and Brown, G.E. Jr, Geochim, . Cosmochim. Acta 43, 1467 (1979).CrossRefGoogle Scholar
Dan Sykes, C.M.S., Geophys, J.. Res. 951, 4 (1990).Google Scholar
Matson, D.W., Sharma, S.K. and Philpotts, J.A., Amer. Mineral. 71, 694 (1986).Google Scholar
Pierce, E.M., Reed, L.R., Shaw, W.J., McGrail, B.P., Icenhower, J.P., Windisch, C.F., Cordova, E.A. and Broady, J., Geochim. Cosmochim. Act. 74, 2634 (2010).Google Scholar
Onuma, K., Iwai, T. and Kenzo, Y., J. Fac. Sci., Hokk. U. Ser. 4, Geol. Mineral. 15, 179 (1972).Google Scholar
de Oliveira, J.C.P., da Costa, M.I. Jr., Schreiner, W.H., Vasquez, A., Vieira, N. Jr. and Roisenberg, A., J. Magn. Magn. Mater. 75, 5 (1988).CrossRefGoogle Scholar
Ballet, O., Coey, J.M.D., Fillion, G., Ghose, A., Hewat, A. and Regnard, J.R., Phys. Chem. Miner. 16, 6 (1989).Google Scholar
Cornell, R.M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd, Completely Revised and Extended Edition, 2, (John Wiley & Sons, Hoboken, 2003).CrossRefGoogle Scholar
Ahmadzadeh, M., Ataie, A. and Mostafavi, E., J. Alloys Compd. 622, 9 (2015).Google Scholar
Sokolova, E.V., Hawthorne, F.C. and Khomyakov, A.P., Can. Mineral. 39, 159 (2001).Google Scholar
Lee, S.K. and Stebbins, J.F., J. Non-cryst. Solids 270, 260 (2000).CrossRefGoogle Scholar
Zanotto, E.D., Tsuchida, J.E., Schneider, J.F. and Eckert, H., Int. Mater. Rev. 60, 16 (2015).Google Scholar