Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T07:28:51.908Z Has data issue: false hasContentIssue false

Cobalt Metal ion Doped Cerium Oxide (Co-CeO2) Nanoparticles Effect Enhanced Photocatalytic Activity

Published online by Cambridge University Press:  08 July 2020

G. Killivalavan
Affiliation:
Research & Development Centre, Department of Physics, Bharathiar University, Coimbatore-641046, Tamil Nadu (TN), India
B. Sathyaseelan*
Affiliation:
Research & Development Centre, Department of Physics, Bharathiar University, Coimbatore-641046, Tamil Nadu (TN), India Department of Physics, University College of Engineering Arni, Anna University Chennai, Arni-632326, TN, India
G. Kavitha
Affiliation:
P.G. & Research Department of Physics, A. M. Jain College, Meenambakkam-600114, Chennai, India
I. Baskarann
Affiliation:
Department of Physics, Arignar Anna Government Arts College, Cheyyar-604407, TN, India
K. Senthilnathan
Affiliation:
Photonics Division, School of Advanced Sciences, VIT University, Vellore-632014, TN, India
D. Sivakumar
Affiliation:
Dept. of Physics, Sree Krishna College of Engineering, Unai, Anaicut-632101, TN, India
N. Karthikeyan
Affiliation:
Department of Physics, Anna University, Chennai-600025, Tamil Nadu, India
E. Manikandan*
Affiliation:
Department of Physics, Government Arts and Science College, Thennangur-604408, Thiruvalluvar University, Vellore, TN, India UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province, South Africa
M. Maaza
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province, South Africa
*
(*Corresponding Author: [email protected]; [email protected])
(*Corresponding Author: [email protected]; [email protected])
Get access

Abstract

The REE (rare-earth-elements) cerium (Ce) is the most abundant earth-crust element and their oxides have great attention in the form of nanocrystalline nature with superior physical and chemical properties. Pure and Co (1%, 3% and 5%) doped CeO2 nanoparticles (NPs) synthesized by co-precipitation technique were characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy. XRD shows face-centred-cubic (FCC) crystal symmetry with average crystallite size 6–12 nm. HRTEM exhibits almost identical cubical shaped particles with average size 4–10 nm. Tuned band-gap may be observed from UV-visible spectrum of CeO2-NPs upon Co (1%, 3% & 5%) incorporation. Enhancement of the photocatalytic activity observed for Co-doped (1%, 3% & 5%) to the degradation of methylene-blue (MB) dye under visible-light absorption.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Laberty-Robert, C.; Long, J. W.; Pettigrew, K. A.; Stroud, R. M.; Rolison, D. R. Ionic Nanowires at 600 °C: Using Nanoarchitecture to Optimize Electrical Transport in Nanocrystalline Gadolinium-Doped Ceria. Adv. Mater. 2007, 19, 17341739.10.1002/adma.200601840CrossRefGoogle Scholar
Li, H.; Wang, G.; Zhang, F.; Cai, Y.; Li, He, Wang, G.; Zhang, F.; Cai, Y.; Wang, Y.; Djerdj, I. Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment. RSC Adv. 2012, 2, 1241312423.10.1039/c2ra21590jCrossRefGoogle Scholar
Zhang, H. X.; He, Z.; Zhang, P.; Li, Y.; Ma, Y.; Kuang, Y.; Zhao, Y.; Chai, Z. Nano-CeO2 Exhibits Adverse Effects at Environmental Relevant Concentrations. Environ. Sci. Technol. 2011, 45, 37253730.10.1021/es103309nCrossRefGoogle ScholarPubMed
Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 23082312.Google Scholar
Chen, F.; Cao, Y.; Jia, D. Preparation and photocatalytic property of CeO2 lamellar. Appl. Surf. Sci. 2011, 257, 92269231.10.1016/j.apsusc.2011.06.009CrossRefGoogle Scholar
Gao, F.; Lu, Q.; Komarneni, S. J. Fast Synthesis of Cerium Oxide Nanoparticles and Nanorods. Nanosci. Nanotechnol. 2006, 6, 38123819.Google ScholarPubMed
Gu, F.; Wang, Z.; Han, D.;, Shi, C.; Guo, G. Reverse micelles directed synthesis of mesoporous ceria nanostructures. Mater. Sci. Eng. B. 2007, 139, 6264.10.1016/j.mseb.2007.01.051CrossRefGoogle Scholar
Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J. Appl. Phys. 2000, 87, 13181321.10.1063/1.372016CrossRefGoogle Scholar
Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; Yan, C.H. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods and Nanocubes. J. Phys. Chem. B 2005, 109, 2438024385.10.1021/jp055584bCrossRefGoogle ScholarPubMed
Martono, E.; Hyman, M. P.; Vohs, J. M. Reaction Pathways for Ethanol on Model Co/ZnO(0001) Catalysts. Phys. Chem. Chem. Phys. 2011, 13, 98809886.10.1039/c1cp20132hCrossRefGoogle ScholarPubMed
Batista, M. S.; Santos, R. K. S.; Assaf, E. M.; Assaf, J. M.; Ticianelli, E. A. Characterization of the Activity and Stability of Supported Cobalt Catalysts for the Steam Reforming of Ethanol. J. Power Sources. 2003, 124, 99103.10.1016/S0378-7753(03)00599-8CrossRefGoogle Scholar
Huang, L.; Nishinari, K.; Interaction between poly (ethyleneglycol) and water as studied by differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics. 2001,39, 496506.10.1002/1099-0488(20010301)39:5<496::AID-POLB1023>3.0.CO;2-H3.0.CO;2-H>CrossRefGoogle Scholar
Pastoriza-Santos, I.; Liz-Marzan, L.M.; Synthesis of silver nanoprisms in DMF. Nano Lett. 2 (2002) 903.10.1021/nl025638iCrossRefGoogle Scholar
Zhang, T. M.; Li, J.; Li, H.; Li, Y.; Shen, W. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods and nanoparticles. Catal. Today. 2009, 148, 179183.Google Scholar
Wang, Z.; Quan, Z.; Lin, J. Remarkable Changes in the Optical Properties of CeO2 Nanocrystals Induced by Lanthanide Ions Doping. J. Lin, Inorg. Chem. 2007, 46, 52375242.10.1021/ic0701256CrossRefGoogle Scholar
American Society for Testing and Material. Powder Diffraction Files; Joint Committee on Powder Diffraction Standards: Swarthmore, PA, 1999, pp 3888.Google Scholar
Sathyaseelan, B.; Sambasivam, S.; Alagesan, T.; Sivakumar, K. Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED. Int. J. Nano Dimens. 2014, 341349.Google Scholar
Zhang, F.; Chan, S-W.; Spanier, J.E.; Apak, E.; Jin, Q.; Robinson, R. D.; Irving Herman, P. Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl Phys Lett 2002, 80,127129.CrossRefGoogle Scholar
May, G. J. Ionic conductivity and crystal structure of magnesium- and cobalt-doped sodium-beta-alumina. J Mater Sci. 1978,13, 261267.10.1007/BF00647769CrossRefGoogle Scholar
Li, L.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. Controlled Cobalt Oxide from Two-Dimensional Films to One-Dimensional Nanorods and Zero-Dimensional Nanoparticles: Morphology Dependent Optical Carbon Monoxide Gas-Sensing Properties. J. Phys. Chem. C 2009,113, 1594815954.10.1021/jp905715gCrossRefGoogle Scholar
Kumar, A.; Kumar, D.; Pandey, G. Characterisation of hydrothermally synthesised CuO nanoparticles at different pH. J. Technological Advances and Scientific Res. 2016, 2(4), 166169.Google Scholar
Zhang, H.; He, X.; Zhang, Z.; Zhang, P.; Li, Y.; Ma, Y.; Kuang, Y.; Zhao, Y.; Chai, Z. Nano-CeO2 Exhibits Adverse Effects at Environmental Relevant Concentrations. Environ. Sci. Technol. 2011, 45, 37253730.CrossRefGoogle ScholarPubMed
Zhang, Q. C.; Yu, Z. H.; Li, G.; Ye, Q. M.; Lin, J. H. Synthesis of quantum-size cerium oxide nanocrystallites by a novel homogeneous precipitation method. J. Alloys Compd. 2009, 477, 8184.10.1016/j.jallcom.2008.10.059CrossRefGoogle Scholar
Saravanakumar, K.; Ramjan, M. M.; Suresh, P.; Muthuraj, V. Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants. Alloys and Comp. 2016, 664, 149160.10.1016/j.jallcom.2015.12.245CrossRefGoogle Scholar
Zhang, L.; Zhang, Q.; Xie, H.; Guo, J.; Lyu, H.; Li, Y.; Sun, Z.; Wang, H.; Guo, Z. Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B: Environ. 2017, 201, 470478.10.1016/j.apcatb.2016.08.056CrossRefGoogle Scholar
Kaviyarasu, K.; Manikandan, E.; Nuru, ZY.; Maaza, M. Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant. Materials Letters. 2015, 160, 6163.10.1016/j.matlet.2015.07.099CrossRefGoogle Scholar
Xue, Li.; He, Hong.; Liu, Chang.; Zhang, Changbin.; and Zhang, Bo.; Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt–Cerium Composite Oxide Catalysts for N2O Decomposition. Environmental Science & Technology 2009, 43 (3), 890895.CrossRefGoogle ScholarPubMed
Mwakikunga, BW.; Forbes, A.; Sideras-Haddad, E.; Scriba, M.; Manikandan, E. Self-Assembly and Properties of C:WO3 Nano-Platelets and C:VO2/V2O5 Triangular Capsules Produced by Laser Solution Photolysis. Nanoscale Research Letters. 2010, 5 (2), 389.10.1007/s11671-009-9494-4CrossRefGoogle Scholar
Ranjith, K. S.; Saravanan, P.; Chen, Shih-Hsien.; Dong, Chung-Li.; Chen, Chih Liang.; Chen, Shih-Yun.; Asokan, K.; and Thangavelu, R.; Kumar, R.; Enhanced room-temperature ferromagnetism on Co-doped CeO2 nanoparticles: mechanism and electronic and optical properties. The Journal of Physical Chemistry C 2014, 118 (46), 2703927047.10.1021/jp505175tCrossRefGoogle Scholar
Becker, J.; Raghupathi, K. R.; Pierre, J. St.; Zhao, D;. Koodali, R.T. Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation. J. Phys. Chem. C 2011, 115, 1384413850.CrossRefGoogle Scholar
Gomathisankar, P.; Hachisuka, K.; Katsumata, H.; Suzuki, T.; Funasaka, K.; Kaneco, S. Photocatalytic Hydrogen Production from Aqueous Na2S + Na2SO3 Solution with B-Doped ZnO. ACS Sustain. Chem. Eng. 2013, 1, 982988.CrossRefGoogle Scholar
Qin, H.; Li, W.; Xia, Y.; He, T. Photocatalytic Activity of Heterostructures Based on ZnO and N-Doped ZnO. ACS Appl. Mater. Interfaces 2011, 3, 31523156.10.1021/am200655hCrossRefGoogle ScholarPubMed
Zhang, L.; Yin, L.; Wang, C.; Lun, N.; Qi, Y. Sol–Gel Growth of Hexagonal Faceted ZnO Prism Quantum Dots with Polar Surfaces for Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2010, 2, 17691773.10.1021/am100274dCrossRefGoogle ScholarPubMed
Lu, X.; Zhai, T.; Cui, H.; Shi, J.; Shi, J.; Xie, S.; Huang, Y.; Liang, C.; Tong, Y. Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods. J. Mater. Chem. 2011, 21, 55695572.CrossRefGoogle Scholar
Supplementary material: File

Killivalavan et al. supplementary material

Killivalavan et al. supplementary material

Download Killivalavan et al. supplementary material(File)
File 289.8 KB