Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:21:54.908Z Has data issue: false hasContentIssue false

Catechol End-Functionalized Polysarcosine for In-situ Synthesis and Stabilization of Silver Nanoparticles

Published online by Cambridge University Press:  28 February 2020

Hailemariam Gebru*
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd South, Nanjing 211816, China Technology and Innovation Institute of Ethiopia, PO Box 2884, Addis Ababa, Ethiopia
Zhenjiang Li
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd South, Nanjing 211816, China
*
*Corresponding author. [email protected]
Get access

Abstract

Functional polymers were previously employed to minimize the susceptibility of metallic nanoparticles (MNPs) for aggregation. Herein, we intended to conjugate catechol moiety into the polymer chain end considering its anchoring ability to virtually most surfaces. Accordingly, catechol end-functionalized polysarcosine (cat-PSar) was successfully prepared from the ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCA) using dopamine hydrochloride initiator. ROP of Sar-NCA was carried out at different monomer to initiator feed ratios. The molecular structure of cat-PSar was confirmed by 1H NMR and MALDITOF. Afterward, the obtained catechol functionalized polymer was used for in-situ synthesis and stabilization of silver nanoparticles (Ag-NPs) in aqueous solution. The observed characteristic absorption peak at λmax of 415 nm indicates the formation of Ag-NPs. Scanning electron microscope (SEM) images also elucidate the formation of Ag-NPs with the relatively small sizes of the nanocomposite at a high concentration of silver nitrate. Hence, biomimetic polymers could play a dual role as reducing and stabilizing agents in the preparation of monodispersed MNPs.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoertz, C., Birke, A., Kaps, L., Decker, S., Waechtersbach, E., Fischer, K., Schuppan, D., Barz, M., Schinidt, M., Macromolecules 48, 2074-2086 (2015).CrossRefGoogle Scholar
Duro-Castano, A., England, R. M., Razola, D., Romero, E., Oteo-Vives, M., Morcillo, M. A., Vicent, M. J., Mol. Pharmaceutics 12, 3639-3649 (2015).CrossRefGoogle Scholar
Lu, D., Wang, H., Li, T. E., Li, Y., Dou, F., Sun, S., Guo, H., Liao, S.; Yang, Z.; Wei, Q.; Lei, Z., ACS Appl. Mater. Interfaces 9, 16757-16767 (2017).Google Scholar
Zhang, H.; Chen, J.; Zhang, X.; Xiao, C.; Chen, X.; Tao, Y.; Wang, X., Biomacromolecules 18, 924-930 (2017).CrossRefGoogle ScholarPubMed
Gangloff, N., Fetsch, C., Luxenhofer, R., Macromol. Rapid Commun. 34, 997-1001 (2013).CrossRefGoogle Scholar
Gangloff, N., Ulbricht, J., Lorson, T., Schlaad, H., Luxenhofer, R., Chem. Rev. 116, 1753-1802 (2016).CrossRefGoogle Scholar
Fowler, S. A., Blackwell, H. E., Org. Biomol. Chem. 7, 1508-1524 (2009).CrossRefGoogle Scholar
Secker, C., Brosnan, S. M., Luxenhofer, R., Schlaad, H., Biosci . 15 881-891 (2015).Google Scholar
Zhang, D., Lahasky, S. H., Guo, L., Lee, C.U., Lavan, M., Macromolecules 45, 5833-5841 (2012).CrossRefGoogle Scholar
Lau, K. H. A., Biomater. Sci. 2, 627-633 (2014).CrossRefGoogle Scholar
Luxenhofer, R.; Fetsch, C.; Grossmann, A., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2731-2752.CrossRefGoogle Scholar
Dimitrov, I., Schlaad, H., Chem. Commun. 2, 2944-2945 (2003).CrossRefGoogle Scholar
Hadjichristidis, N., Iatrou, H., Pitsikalis, M., Sakellariou, G., Chem. Rev. 109, 5528-5578 (2009).CrossRefGoogle Scholar
Makino, A., Yamahara, R., Ozeki, E., Kimura, S., Chem. Lett. 36, 1220-1221 (2007).CrossRefGoogle Scholar
Grossmann, A., Luxenhofer, R., Macromol. Rapid Commun. 33, 1714-1719 (2012).CrossRefGoogle Scholar
Cui, S., Pan, X., Gebru, H., Wang, X., Liu, J., Liu, J., Li, Z., Guo, K., J. Mater. Chem. B 5, 679-690 (2017).CrossRefGoogle Scholar
Fan, X. W., Lin, L. J., Dalsin, J. L., Messersmith, P. B., J. Am. Chem. Soc. 127, 15843-15847 (2005).CrossRefGoogle Scholar
Dalsin, J. L., Hu, B. H., Lee, B. P., Messersmith, P. B., J. Am. Chem. Soc. 125, 4253-4258 (2003).CrossRefGoogle Scholar
Dalsin, J. L., Lin, L. J., Tosatti, S., Voros, J., Textor, M., Messersmith, P. B., Langmuir 21, 640-646 (2005).CrossRefGoogle Scholar
Barz, M., Luxenhofer, R., Zentel, R., Vicent, M. J., Polym. Chem. 2, 1900-1918 (2011).CrossRefGoogle Scholar
Khuphe, M., Kazlauciunas, A., Huscroft, M., Thornton, P. D., Chem. Commun. 51, 1520-1523 (2015).CrossRefGoogle Scholar
Fetsch, C., Grossmann, A., Holz, L., Nawroth, J. F. R., Luxenhofer, , Macromolecules 44, 6746-6758 (2011).CrossRefGoogle Scholar
Lutz, J. F., Schutt, D., Kubowicz, S., Macromol. Rapid Commun. 26, 23-28 (2005).CrossRefGoogle Scholar
Vacogne, C. D., Schlaad, H., Chem. Commun. 51, 15645-15648 (2015).CrossRefGoogle Scholar
Zou, J., Fan, J., He, X., Zhang, S., Wang, H., Wooley, K. L., Macromolecules 46, 4223-4226 (2013).CrossRefGoogle Scholar
Black, K. C. L., Liu, Z., Messersmith, P. B., Chem. Mater. 23, 1130-1135 (2011).CrossRefGoogle Scholar
Fullenkamp, D. E., Barrett, D. G., Miller, D. R., Kurutz, J. W., Messersmith, P. B., RSC Adv . 4, 25127-25134 (2014).CrossRefGoogle Scholar
Marcelo, G., Gonzalez, M. L., Mendicuti, F., Tarazona, M. P., Valiente, M., Macromolecules 47, 6028-6036 (2014).CrossRefGoogle Scholar
Neves, A., Rossi, L. M., Bortoluzzi, A. J., Szpoganicz, B., Wiezbicki, C., Schwingel, E., Inorg. Chem. 41, 1788-1794 (2002).CrossRefGoogle Scholar
Cheng, Y., Yin, L., Lin, S., Wiesner, M., Bernhardt, E., Liu, J., J. Phys. Chem. C 115, 4425-4432 (2011).CrossRefGoogle Scholar
Yuan, Y.Y., Liu, X.Q., Wang, Y.C., Wang, J., Langmuir 25, 10298-10304 (2009).CrossRefGoogle Scholar
Kannan, P., John, S. A., Nanotechnol . 19, 8 (2008).CrossRefGoogle Scholar
Wang, Z., Tan, B., Hussain, I., Schaeffer, N., Wyatt, M. F., Brust, M., Cooper, A. I., Langmuir 23, 885-895 (2007).CrossRefGoogle ScholarPubMed
Bajpai, S. K., Mohan, Y. M., Bajpai, M., Tankhiwale, R., Thomas, V., J. Nanosci. Nanotechnol. 7, 2994-3010 (2007).CrossRefGoogle Scholar
Tiwari, P. M., Vig, K., Dennis, V. A., Singh, S. R., Nanomaterials 1, 31-63 (2011).CrossRefGoogle Scholar
Soni, S. S., Vekariya, R. L., Aswal, V. K., RSC Adv. 3, 8398-8406 (2013).CrossRefGoogle Scholar
Bleach, R., Karagoz, B., Prakash, S. M., Davis, T. P., Boyer, C., ACS Macro Lett . 3, 591-596 (2014).CrossRefGoogle Scholar
Marcelo, G., Fernandez-Garcia, M., RSC Adv . 4, 11740-11749 (2014).CrossRefGoogle Scholar
Arakaki, A., Shimizu, K., Oda, M., Sakamoto, T., Nishimura, T., Kato, T., Org. Biomol. Chem. 13, 974-989 (2015).CrossRefGoogle Scholar
Zhu, N., Feng, W., Zhang, Z., Fang, Z., Li, Z., Guo, K., Polymer 80, 88-94 (2015).CrossRefGoogle Scholar
Nate, Z., Moloto, M. J., Mubiayi, P. K., Sibiya, P. N., MRS Adv . 3, 2505-2517 (2018).CrossRefGoogle Scholar
Sarkarat, M., Meddeb, A. B., Komarneni, S., Ounaies, Z, MRS Adv. 4, 2103-2108 (2019).CrossRefGoogle Scholar
Zhang, X. F., Liu, Z. G., Shen, W. and Gurunathan, S., Int. J. Mol. Sci. 17, 1534 (2016).CrossRefGoogle Scholar