Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T17:31:17.345Z Has data issue: false hasContentIssue false

Ca2-αLaαNb3-βXβO10 Nanosheet Photocatalyst for Hydrogen Generation from Water Splitting

Published online by Cambridge University Press:  24 May 2018

Hitomi Ohmagari
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855
Mohammad Razaul Karim
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855 Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.
Yuta Shudo
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855
Shintaro Ida
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855
Ryo Ohtani
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855
Shinya Hayami*
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855
*
Get access

Abstract

Ca2-αLaαNb3-βXβO10 nanosheets ((α, β=0-0.14), X= Rh(LaRh), Mn(LaMn), Fe(LaFe), Ni(LaNi)) were synthesized by exfoliation using the surfactant aided sonication method. These nanosheets demonstrated superior photocatalytic activities for water splitting into hydrogen at room temperature. SEM-EDX images and spectra confirmed the morphology and composition of the materials where doped metal precursors inserted into the heterogeneous structure aided the photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aou, Z., Ye, J., Sayama, K. and Arakawa, H., Nature. 414, 625627 (2001).Google Scholar
Kudo, A., Int. J. Hydrog. Energy. 31, 197202 (2006).CrossRefGoogle Scholar
Kawashima, K., Hojamberdiev, M., Wagata, H., Zahedi, E., Yubuta, K., Domen, K. and Tehima, Ka., J. catal. 344, 2937 (2016).CrossRefGoogle Scholar
Abe, R.. Shinmei, K., Hara, K. and Ohtani, B., Chem. Commun. 24, 35773579 (2009).CrossRefGoogle Scholar
Fujishima, A., Honda, K., Nature. 238, 3738 (1972).CrossRefGoogle Scholar
Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, J. N., Hara, M., Kobayashi, H., Domen, K. and Inoue, Y., J. Am. Chem. Soc. 127, 41504151 (2005).CrossRefGoogle Scholar
Oshima, T., Lu, D. and Maeda, K., Chem. Nano. Mater. 2, 748755 (2016).Google Scholar
Iizuka, K., Wato, T., Miseki, Y., Saito, K. and Kudo, A., J. Am. Chem. Soc. 133, 2086320868 (2011).CrossRefGoogle Scholar
Masud, S., Zarei, M., Lopez, M. L., G.-Torresdey, J., Ramana, C. V. and Saupe, G. B., Mater. Sci. Eng. B. 174, 6670 (2010).CrossRefGoogle Scholar
Kudo, A., Niishiro, R., Iwase, A. and Kato, H., Chem. Phys. 339, 104110 (2007).CrossRefGoogle Scholar
Ishihara, T., Nishiguchi, H., Fukamachi, K. and Takita, Y., J. Phys. Chem. B. 103,1 (1999)CrossRefGoogle Scholar
Miseki, Y., Kato, H. and Kudo, A., Energy Environ. Sci. 2, 306314 (2009).CrossRefGoogle Scholar
Iizuka, K., Wato, T., Miseki, Y., Saito, K. and Kudo, A., J. Am. Chem. Soc. 133, 2086320868 (2011).CrossRefGoogle Scholar
Konta, R., Ishii, T., Kato, H. and Kudo, A., J. Phys. Chem. B. 108, 8992 (2004).CrossRefGoogle Scholar
Ida, S. and Ishihara, T., J. Phys. Chem. Lett., 5, 2533 (2014)CrossRefGoogle Scholar
Okamoto, Y., Ida, S., Hyodo, J., Hagiwara, H. and Ishihara, T., J. Am. Chem. Soc. 133, 1803418037 (2011)CrossRefGoogle Scholar
Song, Y., Iyi, N., Hoshide, T., Ozawa, T. C., Ebina, Y., Ma, R., Miyamoto, N. and Sasaki, T., Chem. Commun. 51, 17068 (2015).CrossRefGoogle Scholar
Ebina, Y., Akatsuka, K., Fukuda, K. and Sasaki, T., Chem. Mater. 24, 42014208 (2012).CrossRefGoogle Scholar
Dion, M. and Tournoux, M. G. M., Mat. Res. Bull. 16, 14291435 (1981).CrossRefGoogle Scholar
Ebina, Y., Sasaki, T., Harada, M. and Watanabe, M., Chem. Mater. 14, 4390–439 (2002).CrossRefGoogle Scholar
Fukuoka, H., Isami, T. and Yamanaka, S., J. Solid State Chem. 151, 4045 (2000).CrossRefGoogle Scholar
Oshima, T., Ishitani, O. and Maeda, K., Adv. Mater. Interfaces. 1, 1400131 (2014).CrossRefGoogle Scholar
Oshima, T., Yokoi, T., Eguchi, M. and Maeda, K., Dalton Trans. 46, 1059410601 (2017).CrossRefGoogle Scholar
Ahou, Y., Wen, T., Guo, Y., Yang, B. and Wang, Y., RSC Adv. 6, 6493064936 (2016).Google Scholar
Suzuki, H., Tomita, O., Higashi, M. and Abe, R., Catal. Sci. Technol. 5, 26402648 (2015).CrossRefGoogle Scholar
Sabio, E. M., Chamousis, R. L., Browning, N. D. and Oterloh, F. E., J. Phys. Chem. C. 116, 31613170 (2012).CrossRefGoogle Scholar