Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T04:11:13.401Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of Cerium Dioxide Film on TiN and Si Substrates: Structural and Chemical Properties

Published online by Cambridge University Press:  05 June 2017

Silvia Vangelista*
Affiliation:
CNR-IMM - MDM Laboratory, Via C. Olivetti 2, Agrate Brianza (MB) I-20864 Italy
Rossella Piagge
Affiliation:
STMicroelectronics, Via C. Olivetti 2, Agrate Brianza (MB) I-20864 Italy
Satu Ek
Affiliation:
Picosun Oy, Tietotie 3, Espoo FI-02150 Finland
Tiina Sarnet
Affiliation:
Picosun Oy, Tietotie 3, Espoo FI-02150 Finland
Gabriella Ghidini
Affiliation:
STMicroelectronics, Via C. Olivetti 2, Agrate Brianza (MB) I-20864 Italy
Alessio Lamperti
Affiliation:
CNR-IMM - MDM Laboratory, Via C. Olivetti 2, Agrate Brianza (MB) I-20864 Italy
*
Get access

Abstract

Cerium dioxide (CeO2) thin films were deposited by atomic layer deposition (ALD) on both Si and TiN substrates. The ALD growth produces CeO2 cubic polycrystalline films on both substrates. However, the films show a preferential orientation along <200> crystallographic direction for CeO2/Si or <111> for CeO2/TiN. In correspondence, we measure a relative concentration of Ce3+ equals to 22.0% in CeO2/Si and around 18% in CeO2/TiN, by X-ray photoelectron spectroscopy. Such values indicate the presence of oxygen vacancies in the films. Our results underline the films differences and similarities between ALD-deposited CeO2 either on Si or TiN substrates, thus extending the knowledge on the CeO2 structural and chemical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, C.T., Peden, C.H.F., Science 309(5735), 713 (2005).Google Scholar
Kugai, J., Velu, S., Song, C., Catalysis Lett. 101(3-4), 255 (2005).Google Scholar
Singhal, S.C., and Kendall, K. in High-temperature solid oxide fuel cells: fundamentals, design and applications, edited by: Singhal, S. C. and Kendal, K., (Elsevier Science Publishers, Oxford, 2003).Google Scholar
Chiu, F.-C., Lai, C.-M., J. Phys. D: Appl. Phys. 43, 075104 (2010).Google Scholar
Tye, L., El-Masry, N.A., Chikyow, T., McLarty, P., Bedair, S.M., Appl. Phys. Lett. 65, 3081 (1994).CrossRefGoogle Scholar
Luches, P., and Valeri, S., Materials 8(9), 5818 (2015).Google Scholar
Wang, J.C., Chang, K. C., Lei, T.F., Lee, C. L., Electrochem. Solid State Lett. 7, E55 (2004).Google Scholar
Zhu, Y., Jain, N., Hudait, M.K., Maurya, D., Varghese, R., Priya, S., J. Vac. Sci. Technol. B 32, 011217 (2014).Google Scholar
Kim, L., Kim, J., Jung, D., Park, C.-Y., Yang, C.-W., Roh, Y., Thin Solid Films 360, 154 (2000).Google Scholar
Chiang, Y.M., Lavik, E.B., Kosacki, I., Tuller, H.L., Ying, J.Y., Appl.Phys. Lett. 69, 185 (1996).Google Scholar
Kim, W.H., Maeng, W., Kim, M., Gatineau, J., Kim, H., J. Electrochem. Soc. 158, G217 (2011).Google Scholar
Päiväsaari, J., Putkonen, M., Niinistö, L., Mater, J.. Chem. 12, 1828 (2002).Google Scholar
Wrench, J.S., Black, K., Aspinall, H. C., Jones, A.C., Basca, J., Chalker, P.R., King, P.J., Werner, M., Davies, H.O., Heys, P.N., Chem. Vap. Dep. 15, 259 (2009).Google Scholar
King, P.J., Werner, M., Chalker, P.R., Jones, A.C., Aspinall, H.C., Basca, J., Wrench, J.S., Black, K., Davies, H.O., Heys, P.N., Thin Solid Films 519, 4192 (2011).Google Scholar
Lutterotti, L., Matthies, S., Wenk, H.-R., IUCr Newsletter of CPD 21, 14 (1999).Google Scholar
XPSPeak v.4.1, Freeware, University of Warwick (United Kingdom).Google Scholar
Fu, X.Q., Wang, C., Yu, H.C., Wang, Y.G., Wang, T.H., Nanotechnology 18, 145503 (2007).Google Scholar
ICSD no. 621705, from NIST/FIZ FindIt searches Inorganic Crystal Structure Database.Google Scholar
Barreca, D., Gasparotto, A., Maccato, C., Maragno, C., Tondello, E., Comini, E., and Sberveglieri, G., Nanotechnology 18(12), 125502 (2007).Google Scholar
Sayle, T.X.T., Parker, S.C., Catlow, C.R.A., Surf. Sci. 316, 329 (1994).Google Scholar
Sayle, D.C., Maicaneanu, S.A., Watson, G.W., J. Am. Chem. Soc. 124, 11429 (2002).CrossRefGoogle Scholar
Pagliuca, F., Luches, P., Valeri, S., Surf. Sci. 607, 164 (2013).Google Scholar
Perry, D. L., Tsao, L., Brittain, H. G., J. Mater. Sci. Lett. 3, 1017 (1984).CrossRefGoogle Scholar