Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T12:39:01.720Z Has data issue: false hasContentIssue false

Antimony Sulfide Thin Films Obtained by Chemical Bath Deposition using Tartaric Acid as Complexing Agent

Published online by Cambridge University Press:  24 July 2018

J. Escorcia-García*
Affiliation:
CONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila, México.
M. Domínguez-Díaz
Affiliation:
Instituto de Ciencias Físicas-UNAM, Av. Universidad 1001, Cuernavaca 62210, Morelos, México.
A. Hernández-Granados
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas-UAEM, Av. Universidad 1001, Cuernavaca 62209, Morelos, México.
H. Martínez
Affiliation:
Instituto de Ciencias Físicas-UNAM, Av. Universidad 1001, Cuernavaca 62210, Morelos, México.
*
Get access

Abstract

The deposition of uniform, reproducible and compact Sb2S3 thin films were obtained by chemical bath deposition using tartaric acid as a complexing agent. It was found that the thickness of the films increases with the pH of the solution, reaching values of 130 and 170 nm for pH values of 9.5 and 10, respectively. XRD, as well as Raman analysis, showed amorphous Sb2S3 films formed directly from the chemical bath, which crystallized into stibnite after a thermal treatment in N2 with crystallite sizes between 31 and 39 nm. On the other hand, the optical band gap of the Sb2S3 films decreased with an increase in pH, with values of 1.82-2.03 eV for the crystalline ones. An n-type photo-conductivity of 10-6 Ω-1 cm-1 was obtained for the heated films. The evaluation of these films for solar cell applications using CdS as the window layer gave a Voc of 656 mV and a Jsc of 2.66 mA/cm2 under AM1.5G radiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Escorcia-García, J., Nair, M.T.S., and Nair, P.K., Thin Solid Films 569, 2834 (2014).CrossRefGoogle Scholar
Madelung, O., Data in Science Technology: Semiconductors Other Than Group IV Elements and III-V Compounds (Springer-Verlag, Berlin, 1992) p. 64.Google Scholar
González-Lúa, R., Escorcia García, J., Pérez-Martínez, D., Nair, M.T.S., Campos, J., and Nair, P.K., ECS J. Solid State Sci. Technol. 4, Q3Q16 (2015).CrossRefGoogle Scholar
Qiao, S., Liu, J., Li, Z.Q., Wang, S.F., and Fu, G.S., Opt. Express 25, 1958319594 (2017).CrossRefGoogle Scholar
Ma, X., Zhong, J., Li, M., Chen, J., Zhang, Y., Wu, S., Gao, X., Lu, X., Liu, J.-M., and Liu, H., Solar Energy 133, 103110 (2016).CrossRefGoogle Scholar
Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S.M., Hodes, G., and Grätzel, M., J. Phys. Chem. Lett. 1, 15241527 (2010).CrossRefGoogle Scholar
Zheng, L., Jiang, K., Huang, J., Zhang, Y., Bao, B., Zhao, X., Wang, H., Guan, B., Yang, L.M., and Song, Y., J. Mater. Chem. A 5, 47914796 (2017).CrossRefGoogle Scholar
Dargat, A., Mencaragliat, D., Longeaud, C., Savenije, T.J., O’Regan, B., Bourdais, S., Muto, T., Delatouche, B., and Dennler, G., J. Phys. Chem. C 117, 2052520530 (2013).CrossRefGoogle Scholar
Messina, S., Nair, M.T.S., and Nair, P.K., Thin Solid Films 515, 5777 (2007).CrossRefGoogle Scholar
Mane, R.S. and Lokhande, C.D., Mater. Chem. Phys. 78, 385392 (2002).CrossRefGoogle Scholar
Cheng, J., Fan, D.B., Wang, H., Liu, B.W., Zhang, Y.C., and Yan, H., Semicond. Sci. Technol. 18, 656679 (2003).CrossRefGoogle Scholar
Gadakh, S.R. and Bhosale, C.H., Mater. Chem. Phys. 78, 367 (2002).CrossRefGoogle Scholar
Iyer, R. K., Deshpande, S.G., and Rao, G.S., J. Inorg. Nucl. Chem. 34, 33513356 (1972).CrossRefGoogle Scholar
Mane, R.S. and Lokhande, C.D., Mater. Chem. Phys. 82, 347 (2003).CrossRefGoogle Scholar
Avilez-Garcia, R.G., Meza-Avendaño, C.A., Pal, M., Paraguay, F., and Mathews, N.R., Mater. Sci. Semicond. Process. 44, 91100 (2016).CrossRefGoogle Scholar
Sotelo-Marquina, R.G., Sanchez, T.G., Mathews, N.R., and Mathew, X., Mater. Res. Bull. 90, 285294 (2017).CrossRefGoogle Scholar
Parize, R., Katerski, A., Gromyko, I., Repenne, L., Roussel, H., Kärber, E., Appert, E., Krunks, M., and Consonni, V., J. Phys. Chem. C 121, 96729680 (2017).CrossRefGoogle Scholar
Cheng, Y.C., Jin, C.Q., Gao, F., Wu, X.L., Zhong, W., Li, S.H., and Chu, P.K., J. Appl. Phys. 106, 123505 (2009).CrossRefGoogle Scholar
Schröder, D.K., Semiconductor Metal and Device Characterization (Wiley, New York, 1990) p. 597.Google Scholar
Medina-Montes, M.I., Montiel-González, Z., Mathews, N.R., and Mathew, X., J. Phys. Chem. Solids 111, 182189 (2017).CrossRefGoogle Scholar
Hädrich, M., Kraft, C., Metzner, H., Reislöhner, U., Löffler, C., and Witthuhn, W., Phys. Status Solidi C 6, 1257 (2009).CrossRefGoogle Scholar