Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:50:50.815Z Has data issue: false hasContentIssue false

Air Driven Electrospinning of CNT Doped Conductive Polymer Fibers for Electronics

Published online by Cambridge University Press:  28 August 2020

Emily A. Kooistra-Manning
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT, 59701, U.S.A. Mechanical Engineering Department, Montana Technological University, 1300 W. Park St., Butte, MT, 59701, U.S.A.
Lane G. Huston
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT, 59701, U.S.A. Mechanical Engineering Department, Montana Technological University, 1300 W. Park St., Butte, MT, 59701, U.S.A.
Jack L. Skinner
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT, 59701, U.S.A. Mechanical Engineering Department, Montana Technological University, 1300 W. Park St., Butte, MT, 59701, U.S.A.
Jessica M. Andriolo
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT, 59701, U.S.A. Mechanical Engineering Department, Montana Technological University, 1300 W. Park St., Butte, MT, 59701, U.S.A.
Get access

Abstract

An electrostatic and air driven (EStAD) electrospinning device was used to achieve deposition of polymer fiber mats that carry electrical charge. The EStAD device does not require the polymer stream to contact a deposition electrode, thereby allowing enhanced control and processing versatility over production of conductive polymer materials. Direct current (DC) conductivity in the fiber mats was enabled through the use of a composite multi-walled carbon nanotube-polyethylene oxide (MWCNT-PEO) blend for electrospinning (ES). The electrospun fiber mats contained three different concentrations of MWCNTs. Conductivity and resistance were measured for each concentration as an electrospun fiber mat and compared to that of a drop-cast thin film. Results showed that at 7.51 wt% MWCNTs, conductivity in the electrospun fiber mats began to approach that of the drop-cast thin films at 1.76E-01 S/cm. At the lowest weight percent tested (3.37 wt%), conductivity was still measurable at approximately 8.48E-05 S/cm and was comparable to results reported previously using traditional ES methods.

Type
Articles
Copyright
Copyright © 2020 Materials Research Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huston, L. G., Kooistra-Manning, E. A., Skinner, J. L., and Andriolo, J. M., JVST-B, 37 (6), 062002 (2019).Google Scholar
Lee, J. Y., Kang, T.-H., Choi, J. H., Choi, I.-S., and Yu, W.-R., AIP Adv., 8 (3), 035024 (2018).CrossRefGoogle Scholar
Bu, L., Steitz, J., and Kanoun, O., IEEE SSD 2010, (2010).Google Scholar
Duan, W. H., Wang, Q., and Collins, F., Chem. Sci., 2 (7), 1407 (2011).CrossRefGoogle Scholar
Kim, H. and Park, M., U.S. Patent Publication No. 20080292887A1 (27 November 2008).Google Scholar
Kanoun, O., Müller, C., Benchirouf, A., Sanli, A., Dinh, T., Al-Hamry, A., Bu, L., Gerlach, C., and Bouhamed, A., Sensors, 14 (6), 1004210071 (2014).CrossRefGoogle ScholarPubMed
O'Bryan, G., Yang, E. L., Zifer, T., Wally, K., Skinner, J. L., and Vance, A. L., J. Appl. Polym. Sci., 120 (3), 1379-1384 (2011).CrossRefGoogle Scholar
Skinner, J. L., Andriolo, J. M., Beisel, J. D., Ross, B. M., Purkett, L. M., Murphy, J. P., Kyeremateng, J., Franson, M. J., Kooistra-Manning, E. A., Hill, B. E., and Loyola, B. R., Proc. SPIE, 9553 (1), 955302 (2015).Google Scholar
Park, M., Kim, H., Youngblood, J. P., Han, S. W., Verplogen, E., and Hart, A. J., Nanotechnology, 22 (41), 415703 (2011).CrossRefGoogle Scholar
Mir, S. M., Jafari, S. H., Khonakdar, H. A., Krause, B., Pötschke, P., and Qazvini, N. T., Materials & Design, 111, 253262 (2016).CrossRefGoogle Scholar
Topsøe, Haldor, Geometric factors in four point resistivity measurement, 2nd ed. (Vedbæk: Haldor Topsøe Semiconductor Division, 1968) p. 38.Google Scholar
Smits, F. M., Bell Syst. Tech. J., 37 (3), 711718 (1958).CrossRefGoogle Scholar
Chayad, F. A., Jabur, A. R., and Jalal, N. M., Karbala Int. J. Mod. Sci., 1 (4), 187-193 (2015).CrossRefGoogle Scholar
Wang, S.-H., Wan, Y., Sun, B., Liu, Z.-Z., and Xu, W., NRL, 9 (1), 522 (2014).Google Scholar
Su, Z., Li, J., Li, Q., Ni, T., and Wei, G., Carbon, 50 (15), 5605-5617 (2012).CrossRefGoogle Scholar
Nilsson, J.W. and Riedel, S.A., Electrical Circuits, 9th ed. (Prentice Hall, New Jersey, 2011) pp. 30-48.Google Scholar