Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:59:28.848Z Has data issue: false hasContentIssue false

Accelerating Development of Materials for Industrial and High-Tech Applications with Data-Driven Analysis and Simulations

Published online by Cambridge University Press:  13 April 2020

Sergey V. Barabash*
Affiliation:
Intermolecular Inc., 3011 N. First St., San Jose, CA 95134, U.S.A.
*
Get access

Abstract

We describe how the development of advanced materials via high-throughput experimentation at Intermolecular® is accelerated using guidance from modelling, machine learning (ML) and other data-driven approaches. Focusing on rapid development of materials for the semiconductor industry at a reasonable cost, we review the strengths and the limitations of data-driven methods. ML applied to the experimental data accelerates the development of record-breaking materials, but needs a supply of physically meaningful descriptors to succeed in a practical setting. Theoretical materials design greatly benefits from the external modelling ecosystems that have arisen over the last decade, enabling a rapid theoretical screening of materials, including additional material layers introduced to improve the performance of the material stack as a whole, “dopants” to stabilize a given phase of a polymorphic material, etc. We discuss the relative importance of different approaches, and note that the success rates for seemingly similar problems can be drastically different. We then discuss the methods that assist experimentation by providing better phase identification. Finally, we compare the strengths of different approaches, using as an example the problem of identifying regions of thermodynamic stability in multicomponent systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Agrawal, A. and Choudhary, A., APL Mater. 4 (5), 053208 (2016).10.1063/1.4946894CrossRefGoogle Scholar
Correa-Baena, J.-P., Hippalgaonkar, K., van Duren, J, Jaffer, S., Chandrasekhar, V. R., Stevanovic, V., Wadia, C., Guha, S. and Buonassisi, T., Joule 2 (8), 1410-1420 (2018).10.1016/j.joule.2018.05.009CrossRefGoogle Scholar
Kusne, A. G., Gao, T., Mehta, A., Ke, L., Nguyen, M. C., Ho, K.-M., Antropov, V., Wang, C.-Z., Kramer, M. J., Long, C. and Takeuchi, I., Sci. Rep. 4 (1) (2014).Google Scholar
Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J. and Wuttig, M., Nat. Mater. 7 (12), 972-977 (2008).10.1038/nmat2330CrossRefGoogle Scholar
Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. and Ghiringhelli, L. M., Phys. Rev. Mater. 2 (8) (2018).Google Scholar
Yim, K., Yong, Y., Lee, J., Lee, K., Nahm, H.-H., Yoo, J., Lee, C., Seong Hwang, C. and Han, S., NPG Asia Mater. 7 (6), e190-e190 (2015).10.1038/am.2015.57CrossRefGoogle Scholar
Shannon, R. D., in Encyclopedia of Inorganic Chemistry (2006).Google Scholar
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G. and Persson, K. A., APL Mater. 1 (1) (2013).10.1063/1.4812323CrossRefGoogle Scholar
Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., Persson, K. A. and Ceder, G., Comput. Mater. Sci. 68, 314-319 (2013).CrossRefGoogle Scholar
Broberg, D., Medasani, B., Zimmermann, N. E. R., Yu, G., Canning, A., Haranczyk, M., Asta, M. and Hautier, G., Comput. Phys. Commun. 226, 165-179 (2018).10.1016/j.cpc.2018.01.004CrossRefGoogle Scholar
Batra, R., Huan, T. D., Rossetti, G. A. and Ramprasad, R., Chem. Mater. 29 (21), 9102-9109 (2017).10.1021/acs.chemmater.7b02835CrossRefGoogle Scholar
Khazana, : A computational materials knowledge base. Available at: khazana.gatech.edu/module_search/search.php?m=2Google Scholar
Materlik, R., Künneth, C., Falkowski, M., Mikolajick, T. and Kersch, A., J. Appl. Phys. 123 (16) (2018).CrossRefGoogle Scholar
Materlik, R., Künneth, C. and Kersch, A., J. Appl. Phys. 117 (13) (2015).10.1063/1.4916707CrossRefGoogle Scholar
Fang, H.Z. and Barabash, S.V., presented at SISC 2018 (unpublished).Google Scholar
Fang, H.Z. and Barabash, S.V. (unpublished).Google Scholar
Barabash, S. V., J. Comput. Electron. 16 (4), 1227-1235 (2017).10.1007/s10825-017-1077-5CrossRefGoogle Scholar
Zeng, Q., Oganov, A. R., Lyakhov, A. O., Xie, C., Zhang, X., Zhang, J., Zhu, Q., Wei, B., Grigorenko, I., Zhang, L. and Cheng, L., Acta Cryst. C 70 (Pt 2), 76-84 (2014).10.1107/S2053229613027861CrossRefGoogle Scholar
Huan, T. D., Sharma, V., Rossetti, G. A. and Ramprasad, R., Phys. Rev. B 90 (6) (2014).CrossRefGoogle Scholar
Wei, Y., Nukala, P., Salverda, M., Matzen, S., Zhao, H. J., Momand, J., Everhardt, A. S., Agnus, G., Blake, G. R., Lecoeur, P., Kooi, B. J., Iniguez, J., Dkhil, B. and Noheda, B., Nat. Mater. 17 (12), 1095-1100 (2018).CrossRefGoogle Scholar
McBriarty, M. E., Narasimhan, V. K., Weeks, S. L., Pal, A., Fang, H., Petach, T. A., Mehta, A., Davis, R. C., Barabash, S. V. and Littau, K. A., Phys. Status Solidi (B) (2019).Google Scholar
Barabash, S.V. and McBriarty, M.E. (unpublished).Google Scholar
Acuña, L. M., Lamas, D. G., Fuentes, R. O., Fábregas, I. O., Fantini, M. C. A., Craievich, A. F. and Prado, R. J., J. Appl. Cryst. 43 (2), 227-236 (2010).CrossRefGoogle Scholar
Andersson, J. O., Helander, T., Höglund, L., Shi, P. and Sundman, B., Calphad 26 (2), 273-312 (2002).CrossRefGoogle Scholar
Thermo-Calc Software TCHEA1 database version1.0.Google Scholar
Miedema, A. R., de Châtel, P. F. and de Boer, F. R., Physica B+C 100 (1), 1-28 (1980).CrossRefGoogle Scholar
van de Walle, A., Calphad 33 (2), 266-278 (2009).10.1016/j.calphad.2008.12.005CrossRefGoogle Scholar
Chepulskii, R. V., Barabash, S. V. and Zunger, A., Phys. Rev. B 85 (14) (2012).10.1103/PhysRevB.85.144201CrossRefGoogle Scholar