Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T02:37:53.507Z Has data issue: false hasContentIssue false

Accelerated Nano Super Bainite in Ductile Iron

Published online by Cambridge University Press:  15 May 2018

Eric Jiahan Zhao*
Affiliation:
Beijing New Oriental Foreign Language School at Yangzhou, Yangzhou, Jiangsu, P R China
Cheng Liu
Affiliation:
College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu, P R China
Derek O. Northwood
Affiliation:
Mechanical, Auto and Materials Engineering, University of Windsor, Windsor, Ontario, Canada
*
Get access

Abstract

A commercial unalloyed ductile iron has been developed to produce a multiphase matrix microstructure consisting of lenticular prior martensite, feathery upper bainite and a nano-scaled super bainite of lath bainitic ferrite and carbon-enriched film retained austenite. Multi-step heat treatment composed of austenizing, rapidly quenching and isothermally holding at low temperature have been developed. A tensile strength of more than 1.6 GPa, a hardness higher than HRC 54, and an elongation in excess of 5%, are achieved. This is attributed to a synergistic multi-phase strengthening effect. The developed nano super bainite exhibits a good balance between strength and toughness. The presence of martensite formed during the quenching prior to the isothermal treatment, accelerates the kinetics of subsequent nano super bainitic transformation by bainitic laths nucleating quickly at the martensite-austenite interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Panneerselvam, S., Martis, C. J., Putatunda, S. K., and Boileau, J. M., Materials Science & Engineering A, 626, 237246 (2015).CrossRefGoogle Scholar
Sohi, M. H., Ahmadabadi, M. N. and Vahdat, A. B., J. Mater. Process. Technol. 153–154, 203208 (2004).CrossRefGoogle Scholar
Artola, G., Gallastegi, I., Izaga, J., Barrena, M. and Rimmer, A., Int. J. of Metalcasting, 11(1), 131135 (2017).CrossRefGoogle Scholar
Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K. and Speer, J. G., Mater. Sci. and Eng. A, 438-440, 2534 (2006).CrossRefGoogle Scholar
Wang, M. -M., Hell, J. -C. and Tasan, C. C., Scr. Mater., 138, 15 (2017).CrossRefGoogle Scholar
Caballero, F. G. and Bhadeshia, H. K. D. H., Solid State Mater. Sci., 8, 251257 (2004).CrossRefGoogle Scholar
Caballero, F. G., Miller, M. K. and Garcia-Mateo, C., Mater. Sci. Technol., 26, 889898 (2010).CrossRefGoogle Scholar
Gong, W., Tomota, Y., Harjo, S., Su, Y. H. and Aizawa, K., Acta Mater., 85, 243249 (2015).CrossRefGoogle Scholar
Liu, C., Yang, C., Northwood, D. O., Mater. Sci. Technol., 33, 18191828, (2017).CrossRefGoogle Scholar
Mallia, J., Grech, M. and Smallman, R. E., Mater. Sci. Technol., 14, 452460 (1998).CrossRefGoogle Scholar
Navarro-López, A., Sietsma, J. and Santofimia, M. J., Metall. Mater. Trans. A, 47, 10281039 (2016).CrossRefGoogle Scholar
Toji, Y., Matsuda, H. and Raabe, D., Acta Mater., 116, 250262 (2016).CrossRefGoogle Scholar
Zakerinia, H., Kermanpur, A. and Najafizadeh, A., Mater. Sci.. and Eng. A, 528, 35623567 (2011).CrossRefGoogle Scholar
Golchin, S., Avishan, B. and Yazdani, S., Mater. Sci. and Eng. A, 656, 94101 (2016).CrossRefGoogle Scholar
Yang, C., Cui, X. X. and Liu, C., Mater. Sci. Technol., 34, 261267 (2018).CrossRefGoogle Scholar
Liu, C., Zhao, Z. B., Bhole, S. D., Mater. Sci. and Eng. A, 434, 289293 (2006).CrossRefGoogle Scholar
Olivera, E., Dragan, R., Slavica, Z., Sidjanin, L. and Jovanovic, M. T., Mater. Charact. 57, 211217 (2016).Google Scholar
Yang, C., Northwood, D. O. and Liu, C., Int. J. of Comp. Methods and Experimental Measurements, 6 (3), 455462 (2018).CrossRefGoogle Scholar