Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:29:45.614Z Has data issue: false hasContentIssue false

2D Colloidal Nanoplatelets based Optoelectronics

Published online by Cambridge University Press:  28 June 2016

Adrien Robin*
Affiliation:
Nexdot, 10 rue Vauquelin, Paris, France Laboratoire de Physique et d’Etude des Matériaux, ESPCI ParisTech, PSL Research University, Sorbonne Université UPMC Université Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
Emmanuel Lhuillier
Affiliation:
Institut des Nanosciences de Paris, UPMC-CNRS UMR 7588, 4 place Jussieu, boîte courrier 840, 75252 Paris cedex 05, France.
Benoit Dubertret
Affiliation:
Laboratoire de Physique et d’Etude des Matériaux, ESPCI ParisTech, PSL Research University, Sorbonne Université UPMC Université Paris 06, CNRS, 10 rue Vauquelin 75005 Paris, France.
*
*To whom correspondence should be addressed: [email protected]
Get access

Abstract

Two-Dimensional materials open up great prospects in photodetector applications owing to their sharp optical properties and the ability to combine them in layered heterostructures. Among this new class of materials, colloidal nanoplatelets (NPL) made of cadmium chalcogenides readily combine the thickness control at the atomic level together with the large scale production and ease of processing of colloidal materials. As a strategy to overcome the limited mobility inherent to nanocrystal based devices, the photocarrier lifetime is increased by building an electrolyte-gated phototransistor to passivate the electron traps. NPL can also be coupled with a graphene transport layer collecting the photogenerated charges, thus bypassing the transport bottleneck. We show that the charge transfer is driven by the large exciton binding energy of the NPL, which can be engineered by heterostructured NPL. This allows us to control the magnitude and the direction of the charge transfer to graphene. Eventually, we use nanotrench electrodes to decrease the transit time of the carriers, suppress the influence of film defects and provide an electric field large enough to overcome the large exciton binding energy of NPL.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., and Dubertret, B., “Two-Dimensional Colloidal Metal Chalcogenides Semiconductors: Synthesis, Spectroscopy, and Applications,” Acc. Chem. Res., vol. 48, no. 1, pp. 2230, Jan. 2015.Google Scholar
Lhuillier, E., Scarafagio, M., Hease, P., Nadal, B., Aubin, H., Xu, X. Z., Lequeux, N., Patriarche, G., Ithurria, S., and Dubertret, B., “Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz,” Nano Lett., Jan. 2016.Google Scholar
Li, M., Zhi, M., Zhu, H., Wu, W.-Y., Xu, Q.-H., Jhon, M. H., and Chan, Y., “Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution,” Nat. Commun., vol. 6, p. 8513, Sep. 2015.Google Scholar
Pedetti, S., Nadal, B., Lhuillier, E., Mahler, B., Bouet, C., Abécassis, B., Xu, X., and Dubertret, B., “Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films,” Chem. Mater., vol. 25, no. 12, pp. 24552462, Jun. 2013.Google Scholar
Lhuillier, E., Robin, A., Ithurria, S., Aubin, H., and Dubertret, B., “Electrolyte-Gated Colloidal Nanoplatelets-Based Phototransistor and Its Use for Bicolor Detection,” Nano Lett., vol. 14, no. 5, pp. 27152719, May 2014.Google Scholar
Lhuillier, E., Ithurria, S., Descamps-Mandine, A., Douillard, T., Castaing, R., Xu, X. Z., Taberna, P.-L., Simon, P., Aubin, H., and Dubertret, B., “Investigating the n- and p-Type Electrolytic Charging of Colloidal Nanoplatelets,” J. Phys. Chem. C, vol. 119, no. 38, pp. 2179521799, Sep. 2015.Google Scholar
Benchamekh, R., Gippius, N. A., Even, J., Nestoklon, M. O., Jancu, J.-M., Ithurria, S., Dubertret, B., Efros, A. L., and Voisin, P., “Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe,” Phys. Rev. B, vol. 89, no. 3, p. 35307, Jan. 2014.Google Scholar
Robin, A., Lhuillier, E., Xu, X. Z., Ithurria, S., Aubin, H., Ouerghi, A., and Dubertret, B., “Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors,” Sci. Rep., vol. 6, p. 24909, May 2016.Google Scholar
Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F. P. G., Gatti, F., and Koppens, F. H. L., “Hybrid graphene–quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol., vol. 7, no. 6, pp. 363368, May 2012.Google Scholar
Prins, F., Buscema, M., Seldenthuis, J. S., Etaki, S., Buchs, G., Barkelid, M., Zwiller, V., Gao, Y., Houtepen, A. J., Siebbeles, L. D. A., and van der Zant, H. S. J., “Fast and Efficient Photodetection in Nanoscale Quantum-Dot Junctions,” Nano Lett., vol. 12, no. 11, pp. 57405743, Nov. 2012.Google Scholar
Dayen, J.-F., Faramarzi, V., Pauly, M., Kemp, N. T., Barbero, M., Pichon, B. P., Majjad, H., Begin-Colin, S., and Doudin, B., “Nanotrench for nano and microparticle electrical interconnects,” Nanotechnology, vol. 21, no. 33, p. 335303, 2010.CrossRefGoogle Scholar
Lhuillier, E., Dayen, J.-F., Thomas, D. O., Robin, A., Doudin, B., and Dubertret, B., “Nanoplatelets Bridging a Nanotrench: A New Architecture for Photodetectors with Increased Sensitivity,” Nano Lett., vol. 15, no. 3, pp. 17361742, Mar. 2015.CrossRefGoogle Scholar
Ithurria, S. and Talapin, D. V., “Colloidal Atomic Layer Deposition (c-ALD) using Self-Limiting Reactions at Nanocrystal Surface Coupled to Phase Transfer between Polar and Nonpolar Media,” J. Am. Chem. Soc., vol. 134, no. 45, pp. 1858518590, Nov. 2012.Google Scholar
Pedetti, S., Ithurria, S., Heuclin, H., Patriarche, G., and Dubertret, B., “Type-II CdSe/CdTe Core/Crown Semiconductor Nanoplatelets,” J. Am. Chem. Soc., vol. 136, no. 46, pp. 1643016438, 2014.CrossRefGoogle Scholar
Pallecchi, E., Lafont, F., Cavaliere, V., Schopfer, F., Mailly, D., Poirier, W., and Ouerghi, A., “High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen,” Sci. Rep., vol. 4, p. 4558, Apr. 2014.CrossRefGoogle Scholar