Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T07:23:52.571Z Has data issue: false hasContentIssue false

Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy)

Published online by Cambridge University Press:  05 July 2018

G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Università di Roma Tre, Largo S. Leonardo Murialdo 1, 00146, Roma
F. Bellatreccia
Affiliation:
Dipartimento di Scienze Geologiche, Università di Roma Tre, Largo S. Leonardo Murialdo 1, 00146, Roma
C. T. Williams
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK

Abstract

Titanite occurs in the groundmass of a holocrystalline volcanic ejectum collected in the pyroclastic rocks of the Vico Volcanic complex at Tre Croci, near Viterbo, Italy. The host rock is composed of abundant K-feldspar and minor plagioclase, biotite, clinopyroxene and a feldspathoid (sodalite). Titanite is typically associated with zirconolite, biotite and Fe-oxides. It has a medium Al content (Al2O3 + Fe2O3 = 4–6 wt.%) and contains significant amounts of Zr and LREE, with a chondrite- normalised REE pattern similar to those of titanites from other alkaline rocks. Titanite has been corroded by fluids probably rich in dissolved F and P during a late alteration stage, with evidence for some remobilization and redistribution of the REE and actinide elements.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P., Condie, K.C. and Bowling, G.P. (1986) Geochemical characteristics and possible origins of the Closepet Batholith, south India. J. Geol., 94, 283–99.CrossRefGoogle Scholar
Belkin, H.E., De Vivo, B., Lima, A. and Török, K. (1996) Magmatic (silicates/saline/sulfur-rich/CO2) immiscibility and zirconium and rare-earth element enrichment from alkaline magma chamber margins: evidence from Ponza Island, Pontine Archipelago, Italy. Eur. J. Mineral., 8, 1401–20.CrossRefGoogle Scholar
Černý, P. and Riva di Sanseverino, L. (1972) Comments on crystal chemistry of titanite. N. Jahrb. Mineral., Monatsh., 97103.Google Scholar
Clark, A.M. (1974). A tantalum-rich variety of sphene. Mineral Mag., 39, 605–7.CrossRefGoogle Scholar
Cullers, R.L. and Medaris, G. Jr., (1977) Rare earth elements in carbonatite and cogenetic alkaline rocks: Examples from Seabrook Lake and Callander Bay, Ontario. Contrib. Mineral. Petrol., 65, 143–53.CrossRefGoogle Scholar
Della Ventura, G., Di Lisa, G.A., Marcelli, M., Mottana, A. and Paris, E. (1992) Composition and structural state of alkali feldspars from ejecta in the Roman potassic province, Italy; petrological implication. Eur. J. Mineral., 4, 411–24.CrossRefGoogle Scholar
Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K. (1993) Al-Fe3+ and F-OH constraints on their P-T dependence. Eur. J. Mineral., 5, 219–31.CrossRefGoogle Scholar
Flohr, M.J.K. and Ross, M. (1990) Alkaline igneous rocks of Magnet Cove, Arkansas: mineralogy and geochemistry of syenites. Lithos, 26, 67–98.CrossRefGoogle Scholar
Fleischer, M. (1978) Relation of the relative concentra-tions of lanthanides in titanite to type of host rocks. Amer. Mineral., 63, 869–73.Google Scholar
Fleischer, M. and Altschuler, Z.S. (1969) The relation-ship of the rare-earth composition of minerals to geological environment. Geochim. Cosmochim. Acta, 33, 725–32.CrossRefGoogle Scholar
Giannetti, B. and Luhr, F. (1983) The white trachytic tuff of Roccamonfina Volcano (Rome Region, Italy). Contrib. Mineral. Petrol., 84, 235–52.CrossRefGoogle Scholar
Gieré, R (1986) Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE. Contrib. Mineral. Petrol., 93, 459–70.CrossRefGoogle Scholar
Gieré, R (1996) Formation of rare earth minerals in hydrothermal systems. In Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Jones, A.P. Wall, F. and Williams, C.T., eds.). Mineralogical Society Series 7, Chapman and Hall, London, 105–50.Google Scholar
Green, T.H. and Pearson, N.J. (1986) Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chem. Geol., 55, 105–19.CrossRefGoogle Scholar
Groat, L.A., Carter, R.T., Hawthorne, F.C. and Ercit, T.S. (1985) Tantalian niobian titanite from the Irgon Claim, southeastern Manitoba. Can. Mineral., 23, 569–71.Google Scholar
Henderson, P. (1980) Rare earth element partition between sphene, apatite and other coexisting minerals of the Kangerdlugssuaq intrusion, E. Greenland. Contrib. Mineral. Petrol., 72, 81–5.CrossRefGoogle Scholar
Higgins, J.B. and Ribbe, P.H. (1976) The crystal chemistry and space groups of natural and synthetic titanites. Amer. Mineral., 61, 878–88.Google Scholar
Isetti, G. and Penco, A.M. (1968) La posizione dell'idrogeno ossidrilico nella titanite. Mineral. Petrogr. Acta, 14, 115–22.Google Scholar
Jones, A.P. and Larsen, L.M. (1985) Geochemistry and REE minerals of nepheline syenites from Motzfeldt Centre, South Greenland. Amer. Mineral., 70, 1087–100.Google Scholar
Lloyd, F.E., Edgar, A.D. and Ragnarsdottir, K.V. (1996) LREE distribution in perovskite, apatite and titanite from South West Ugandan xenoliths and kamafugite lavas. Mineral. Petrol., 57, 205–28.CrossRefGoogle Scholar
Locardi, E. (1965) Tipi di ignimbriti di magmi mediterranei: il vulcano di Vico. Atti Soc. Tosc. Sc. Nat., 45, 55–173.Google Scholar
Mongiorgi, R. and Riva di Sanseverino, L. (1968) A reconsideration of the structure of titanite, CaTiOSiO4 . Mineral. Petrogr. Acta, 14, 123–41.Google Scholar
Oberti, R., Smith, D.C., Rossi, G. and Caucia, F. (1991) The crystal-chemistry of high-aluminium titanites. Eur. J. Mineral., 3, 777–92.CrossRefGoogle Scholar
Pan, Y., Fleet, M.E. and MacRae, N. (1993) Late alteration in titanite (CaTiSiO5): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochim. Cosmochim. Acta, 57, 355–67.CrossRefGoogle Scholar
Paterson, B.A., Stephens, W.E. and Herd, D.A. (1989). Zoning in granitoid accessory minerals as revealed by backscattered electron imagery. Mineral. Mag., 53, 5561.Google Scholar
Paul, B.J., Černý, P., Chapman, R. and Hinthorne, J.R. (1981) Niobian titanite from the Huron Claim pegmatite, southeastern Manitoba. Can. Mineral., 19, 549–52.Google Scholar
Perseil, E. and Smith, D.C. (1995) Sb-rich titanite in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrography and crystal-chemistry. Mineral. Mag., 59, 717–34.CrossRefGoogle Scholar
Rubin, J.N., Henry, C.D. and Price, J.G. (1993) The mobility of zirconium and other ‘immobile’ elements during hydrothermal alteration. Chem. Geol., 110, 29–47.CrossRefGoogle Scholar
Russell, J.K., Groat, L.A. and Halleran, A.A.D. (1994) LREE-rich niobian titanite from Mount Bisson, British Columbia: chemistry and exchange mechanisms. Can. Mineral., 32, 575–87.Google Scholar
Sahama, Th.G. (1946) On the chemistry of the mineral titanite. Bull. Comm. Geol. Finlande, 138, 88–120.Google Scholar
Smith, A.L. (1970) Sphene, perovskite and coexisting Fe-Ti oxide minerals. Amer. Mineral., 55, 264–9.Google Scholar
Staatz, M.H., Conklin, N.M. and Brownfield, I.K. (1977) Rare earths, thorium, and other minor elements in sphene from some plutonic rocks in west-central Alaska. J. Res. USGS Survey, 5, 623–8.Google Scholar
Stoppani, F. and Curti, E. (1982) I minerali del Lazio. Olimpia, Firenze, 291 pp.Google Scholar
Washington, H.S. (1906) The Roman comagmatic region. Carnegie Inst. Wash. Publ. No., 57, 199 pp.Google Scholar
Woolley, A.R., Platt, R.G. and Eby, N. (1992) Niobian titanite and eudialite from the Ilomba nepheline syenite complex, north Malawi. Mineral. Mag., 56, 428–30.CrossRefGoogle Scholar