Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T21:28:58.022Z Has data issue: false hasContentIssue false

Zirconolite and calzirtite in banded forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock interactions

Published online by Cambridge University Press:  05 July 2018

M.-L. Pascal*
Affiliation:
PMMP, UMR CNRS 7160, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
A. Di Muro
Affiliation:
PMMP, UMR CNRS 7160, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
M. Fonteilles
Affiliation:
PMMP, UMR CNRS 7160, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
C. Principe
Affiliation:
Istituto di Geoscienze e Georisorse, Area della Ricerca CNR di Pisa San Cataldo, 56124 Pisa, Italy
*

Abstract

Two Ca-Zr-Ti oxides, zirconolite CaZrTi2O7 and calzirtite Ca2Zr5Ti2O16, occur as minute interstitial crystals in skarn (forsterite-spinel-calcite, with rhythmic banding) ejecta from the 1631 eruption of Vesuvius. The substitutions in zirconolite observed here mainly include Nb-for-Ti (typical for zirconolites in alkaline magmatic surroundings) and (Th,U)-for-Ca, and produce a crystal-chemical formula Ca0.9–1Th0.04–0.12U0.04–0.10ZrTi1.36–1.61Nb0.09–0.22(Fe,Mg,Al)0.29–0.47O7. The skarn, which occurs in contact with a pyroxenite of magmatic origin, displays a mineralogical zoning with Zr-, Ti-, Nb- and (U,Th)-rich oxides (e.g. Nb-perovskite and zirconolite) close to the pyroxenite (<2 mm), whereas those oxides observed further from the pyroxenite (>1 cm) are richer still in Zr but (Ti, Nb, U, Th)-poor or free (e.g. calzirtite and baddeleyite ZrO2). Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite, through drastic leaching of Na, K, Si, Fe. The same process is responsible for the zoning in the skarn (leaching of Fe, Si, Ti, Nb, U and Th), in which Zr was less mobilized than other HFSE. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those forsterite-spinel (± calcite) skarns which can be observed as remnants in a large part of the 1631 ejecta. Such endoskarns probably formed repeatedly during at least the last millennia of Vesuvius’ history, and existed prior to the emplacement at shallow depth of the 1631 magma whose chamber walls were different from the limestone/dolostone classically assumed to host the Vesuvius magmas (Fulignati et al., 2005).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Hermezi, H.M. (1985) Qandilite, a new spinel end- member, Mg2TiO4, from the Qala-Dizeh region, NE Iraq. Mineralogical Magazine, 49, 739—744.CrossRefGoogle Scholar
Arrighi, S., Principe, C. and Rosi, M. (2001) Violent strombolian and subplinian eruptions at Vesuvius during the post 1631 activity. Bulletin of Volcanology, 63, 126—150.CrossRefGoogle Scholar
Barsukova, M.L., Kuznetsov, V.A., Dorofeyva, V.A. and Khodakovskiy, L.I. (1979) Measurement of the solubility of rutile TiO2 in fluoride solutions at elevated temperatures. Geochemistry International, 7, 41—49.Google Scholar
Bayliss, P., Mazzi, F., Munno, R. and White, T.J. (1989) Mineral nomenclature: zirconolite. Mineralogical Magazine, 53, 565—569.Google Scholar
Bellatreccia, F., Della Ventura, G., Caprilli, E., Williams, C.T. and Parodi, G.C. (1999) Crystal- chemistry of zirconolite and calzirtite from Jacupiranga, Sao Paulo (Brazil). Mineralogical Magazine, 63, 649—660.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Williams, C.T., Lumpkin, G.R., Smith, K.L. and Collela, M. (2002) Non-metamict zirconolite polytypes from the feld- spathoid-bearing alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy). European Journal of Mineralogy, 14, 809—820.CrossRefGoogle Scholar
Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O- CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445—522.CrossRefGoogle Scholar
Boden, P. and Glasser, F.P. (1973) Phase relations in the system MgO-Al2O3-TiO2. Transactions and Journal of the British Ceramic Society, 76, 1480—1482.Google Scholar
Boudreau, A.E. (1994) Mineral segregation during crystal aging in a two-crystal, two-component system. South African Journal of Geology, 97, 473—485.Google Scholar
Brocchini, D., Principe, C., Castradori, D., Laurenzi, M.A. and Gorla, L. (2001) Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well. Mineralogy and Petrology, 73, 67—91.CrossRefGoogle Scholar
Bulakh, A.G., Anastasenko, G.F. and Dakhiya, L.M. (1967) Calzirtite from carbonatites of northern Siberia. American Mineralogist, 52, 1880—1885.Google Scholar
Burnham, C.W. (1959) Contact metamorphism of magnesian limestones at Crestmore, California. American Journal of Science, 57, 879—928.Google Scholar
Crocetti, S. (1996) L’eruzione vesuviana del 1631: studio dei litici e reazioni termometasomatiche ai margini della camera magmatica. Degree thesis, Pisa University, 234 pp.Google Scholar
Crocetti, S. and Franceschini, F. (1996) Thermometasomatic effects on carbonate rocks. An example of 1631 Vesuvian magma chamber. Poster, CEV-CMVD Workshop on Vesuvius Decade Volcano, Naples, September 17—23, 1996. Google Scholar
Della Ventura, G., Williams, C.T., Raudsepp, M., Bellatreccia, F., Caprilli, E. and Giordano, G. (2001) Perrierite-(Ce) and zirconolite from a syenitic ejectum of the Roccamonfina volcano (Latium, Italy): implications for the mobility of Zr, Ti and REE in volcanic environments. Neues Jahrbuch für Mineralogie Monatshefte, 385—402.Google Scholar
Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarn deposits. Economic Geology, 75, 317—391.Google Scholar
Fialin, M., Rémy, H., Richard, C. and Wagner, C. (1999) Trace element analysis with the electron microprobe: New data and perspectives. American Mineralogist, 84, 70—77.CrossRefGoogle Scholar
Fulignati, P., Marianelli, P., Santacroce, R. and Sbrana, A. (2000) The skarn shell of the 1944 Vesuvius magma chamber. Genesis and P-T-X conditions from melt and fluid inclusion data. European Journal of Mineralogy, 12, 1025—1039.CrossRefGoogle Scholar
Fulignati, P., Marianelli, P., Santacroce, R. and Sbrana, A. (2004) Probing the Vesuvius magma chamber- host rock interface through xenoliths. Geological Magazine, 141, 417—428.CrossRefGoogle Scholar
Fulignati, P., Panichi, C., Sbrana, A., Caliro, S., Gioncada, A. and Del Moro, A. (2005) Skarn formation at the walls of the 79 AD magma chamber of Vesuvius (Italy). Mineralogical and isotopic constraints. Neues Jachbuch für Mineralogie Abhandlungen, 181, 53—66.Google Scholar
Gieré, R. (1986) Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE. Contributions to Mineralogy and Petrology, 93, 459—470.CrossRefGoogle Scholar
Gieré, R. and Williams, C.T. (1992) REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contributions to Mineralogy and Petrology, 112, 83—100.CrossRefGoogle Scholar
Gieré, R., Williams, C.T. and Lumpkin, G.R. (1998) Chemical characteristics of natural zirconolite. Schweizerische Mineralogie und Petrographie Mitteilungen, 78, 433—459.Google Scholar
Giosa, P. (2002) Processi di vescicolazione e di degassamento nella dinamica dell’eruzione del Vesuvio del 1631. Unpublished degree thesis, Pisa University, 196 pp. (in Italian).Google Scholar
Gordon, T.M and Greenwood, H.J. (1970) The reaction: dolomite + quartz + water = talc + calcite + carbon dioxide. American Journal of Science, 268, 225—242.CrossRefGoogle Scholar
Gramaccioli (1979) Zirkonium Mineralien in der Vulkan-Auswurflinge Italiens. Lapis, 4, 62—63.Google Scholar
Gulbrandsen, R., Kramer, J.R., Beatty, L.B. and Mays, R.E. (1966) Carbonate-bearing apatite from Faraday Township, Ontario, Canada. American Mineralogist, 51, 819—824.Google Scholar
Henmi, C., Kusachi, I. and Henmi, K. (1995) Morimotoite, Ca3TiFe2+Si3O12, a new titanian garnet from Fuka, Okayama Prefecture. Japanese Mineralogical Magazine, 59, 115 — 120.Google Scholar
Hogarth, D.D. (1961) A study of pyrochlore and betafite. The Canadian Mineralogist, 6, 610—633.Google Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist, 62, 403—410.Google Scholar
Holness, M.B. (1997) Geochemical self-organization of olivine-grade contact metamorphosed chert nodules in dolomite marble, Kilchrist, Skye. Journal of Metamorphic Geology, 15, 765—775.CrossRefGoogle Scholar
Holness, M.B. (2000) Metasomatism and self-organization of dolerite dyke - marble contacts: Beinn an Dubhaich, Skye. Journal of Metamorphic Geology, 18, 103 — 118.CrossRefGoogle Scholar
Jamtveit, B., Dahlgren, S. and Austrheim, H. (1997) High-grade contact metamorphism of calcareous rocks from the Oslo rift, Southern Norway. American Mineralogist, 82, 1241 — 1254.CrossRefGoogle Scholar
Joesten, R. (1974) Pseudomorphic replacement of melilite by idocrase in a zoned calc-silicate skarn, Christmas Mountains, Big Bend region, Texas. American Mineralogist, 59, 694—699.Google Scholar
Katona, I. (2004) Formation de skarns et histoire de la cristallisation magmatique en bordure d’une intrusion monzodioritique (Ciclova-Oravita, Banat, Roumanie). PhD thesis, Universite Catholique de Louvain-la-Neuve, Belgium, and Universite Pierre et Marie Curie, France.Google Scholar
Keller, J., Williams, C.T. and Koberski, U. (1995) Niocalite and wöhlerite from the alkaline and carbonatite rocks at Kaiserstuhl, Germany. Mineralogical Magazine, 59, 531—566.CrossRefGoogle Scholar
Kogarko, L.N., Plant, D.A., Henderson, C.M. and Kjarsgaard, B.A. (1991) Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia. Contributions to Mineralogy and Petrology, 109, 124—129.CrossRefGoogle Scholar
Korzhinskii, D.S. (1970) Theory of Metasomatic Zoning. Oxford University Press, London.Google Scholar
Lacroix, A. (1893) Les Enclaves des Roches Volcaniques. Annales de l’Academie de Macon, vol. 10, Protat Freres, Macon, France, 710 pp.Google Scholar
Lee, M.J., Lee, J.I. and Kim, Y. (2003) Occurrence and petrogenesis of Phoscorite-Carbonatite complexes in the Kola alkaline province, Arctic. Ocean and polar research, 25, 119—128.CrossRefGoogle Scholar
Mazzi, F. and Munno, R. (1983) Calciobetafite (new mineral of the pyrochlore group) and related minerals from Campi Flegrei, Italy; crystal structures of polymignite and zirkelite: comparison with pyrochlore and zirconolite. American Mineralogist, 68, 262-276.Google Scholar
Merino, E. (1984) Survey of geochemical self-patterning phenomena. Pp. 305-328 in: Chemical instabilities (G. Nicolis and F. Baras, editors). NATO ASI Series C, Mathematics and physical sciences, 120. D. Reidel Publishing, Dordrecht, Holland.CrossRefGoogle Scholar
Mottet, B. (1991) Synthese hydrothermale d’oxydes ceramiques. Modelisation des morphologies de croissance de la zircone. PhD thesis, University d’Orleans, France.Google Scholar
Nguyen Trung, C. (1985) Geochimie theorique et experimental des oxydes d’uranium dans les solutions aqueuses de 25 a 700°C sous une pression de 1 a 6000 bars. Synthese hydrothermale de certains min^raux d’uranium (VI) et (IV). PhD thesis, INPL, Nancy, France.Google Scholar
Nicholls, I.A. (1971) Calcareous inclusions in lavas and agglomerates of Santorini volcano. Contributions to Mineralogy and Petrology, 30, 261-276.CrossRefGoogle Scholar
O’Neill, H.St.C. and Scott, D.R. (2005) The free energy of formation of Mg2TiO4 (synthetic qandilite), an inverse spinel with configurational entropy. European Journal of Mineralogy, 17, 315-323.CrossRefGoogle Scholar
Orlandi, P., Perchiazzi, N. and Mannucci, G. (1989) First occurrence of britholite-(Ce) in Italy (Monte Somma, Vesuvius). European Journal of Mineralogy, 1, 723-725.CrossRefGoogle Scholar
Owens, B.E. (2000) High-temperature contact metamorphism of calc-silicate xenoliths in the Kiglapait Intrusion, Labrador. American Mineralogist, 85, 1595-1605.CrossRefGoogle Scholar
Pascal, M.L., Fonteilles, M., Verkaeren, J., Piret, R. and Marincea, S. (2001) The melilite-bearing high- temperature skarns of the Apuseni mountains, Carpathians (Romania). The Canadian Mineralogist, 39, 1405-1434.CrossRefGoogle Scholar
Pascal, M.L., Katona, I., Fonteilles, M. and Verkaeren, J. (2005) Relics of high-temperature clinopyroxene on the join Di-CaTs with up to 72 mol.% Ca(Al,Fe3+)AlSiO6 in the skarns of Ciclova and Magureaua Vabei, Carpathians, Romania. The Canadian Mineralogist, 43, 857-881.CrossRefGoogle Scholar
Pascal, M.L., Di Muro, A., Fonteilles, M. and Principe, C. (2006) Magma-dolomite interactions in nodules from the Vesuvius-Monte Somma 1631 fallout. Geophysical Research Abstracts, 8, 09129.Google Scholar
Pascal, M.L., Di Muro, A., Fonteilles, M. and Principe, C. (2008) Zirconolite, calzirtite, baddeleyite, betafite, geikielite and qandilite in skarn ejecta from Vesuvius - inferences for the magma-wallrock interactions. Geophysical Research Abstracts, 10, 06674.Google Scholar
Principe, C., Giosa, P., Cerbai, I., Crocetti, S., Franceschini, F., Marini, L., Gambardella, B., Buettner, A. and Rosi, M. (2003) A dynamic model for the 1631 Vesuvius eruption. Geophysical Research Abstracts, 5, 05432.Google Scholar
Principe, C., Tanguy, C.J., Arrighi, S., Paiotti, A., Le Goff, M. and Zoppi, U. (2004) Chronology of Vesuvius’ activity from A.D. 79 to 1631 based on archeomagnetism of lavas and historical sources. Bulletin of Volcanology, 66, 703-724.CrossRefGoogle Scholar
Puga, E. and Fontbote, J.M. (1980) Zoned silicate nodules in brucite marble Santa Ollala, Western Sierra Morena, Spain. Schweizerische Mineralogie und Petrographie Mitteilungen, 60, 69-80.Google Scholar
Puhan, D. and Johannes, W. (1974) Experimentelle Untersuchung der reaktion Dolomit + Kalifeldspat + H2O = Phlogopit + Calcit + CO2. Contributions to Mineralogy and Petrology, 48, 23-31.CrossRefGoogle Scholar
Reverdatto, V.V. (1970) Pyrometamorphism of limestones and the temperature of basaltic magmas. Lithos, 3, 135-143.CrossRefGoogle Scholar
Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W.O. and Major, A. (1979) The SYNROC process: A geochemical approach to nuclear waste immobilization. Geochemical Journal, 13, 141-165.CrossRefGoogle Scholar
Rosi, M., Principe, C. and Vecci, R. (1993) The 1631 eruption of Vesuvius reconstructed from the review of chronicles and study of deposits. Journal of Volcanology and Geothermal Research, 58, 151-182.CrossRefGoogle Scholar
Rosi, M., Principe, C., Cerbai, I. and Crocetti, S. (1996) The 1631 eruption. Workshop Handbook, CEV- CMVD Workshop on Vesuvius Decade Volcano, September 17-23 1996, p.12.Google Scholar
Russo, M. and Punzo, I. (2004) I minerali del Somma- Vesuvio. Associazione Micro-mineralogica Italiana, Cremona, 317 pp.Google Scholar
Russo, M., Punzo, I., Bla, G. and Ciriotti, E.M. (2007) Zirconolite, Albite ed epidoto: nuova e poco note specie del Somma-Vesuvio. Micro, 1, 43-48.Google Scholar
Salvi, S. and William-Jones, A.E. (1995) Zirconosilicate phase relations in the Strange lake (Las Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist, 80, 1031-1040.CrossRefGoogle Scholar
Sinclair, W. and Eggleton, R.A. (1982) Structure refinement of zirkelite from Kaiserstuhl, West Germany. American Mineralogist, 67, 615-620.Google Scholar
Sinclair, W., Eggleton, R.A. and McLaughlin, G.M. (1986) Structure refinement of calzirtite from Jacupiranga, Brazil. American Mineralogist, 71, 815-818.Google Scholar
Telouk, P., Rose-Koga, E.F. and Albarede, F. (2003) Preliminary results from a new 157 nm laser ablation ICP-MS instrument: New opportunities in the analysis of solid samples. Geostandards Newsletter, 27, 5-11.CrossRefGoogle Scholar
Tilley, C.E. and Harwood, H.F. (1931) The dolerite- chalk contact of Scawt Hill, Co Antrim. The production of basic alkali rocks by assimilation of limestone by basaltic magma. Mineralogical Magazine, 22, 439—468.Google Scholar
Traversa, G., Gomes, C.B., Brotzu, P., Buraglini, N., Morbidelli, L., Principato, M.S., Ronca, S. and Ruberti, E. (2001) Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxa complex (Alto Paranaiba Province, Brazil). Anais da Academia Brasileira de Ciencias, 73, 71—98.CrossRefGoogle Scholar
Ulrych, J., Pivec, E., Rychly, R. and Rutek, J. (1992) Zirconium mineralization of young alkaline volcanic rocks from northern Bohemia. Geologica Carpathica, 43, 91—95.Google Scholar
Van Baalen, M.R. (1993) Titanium mobility in metamorphic systems: a review. Chemical Geology, 110, 233—249.CrossRefGoogle Scholar
Williams, C.T. and Gieré, R. (1996) Zirconolite: a review of localities worldwide, and a compilation of its chemical composition. Bulletin of the Natural History Museum (Geology), 52, 1—24.Google Scholar