Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-30T17:02:48.081Z Has data issue: false hasContentIssue false

Zincostottite, ZnGe(OH)6, the zinc analogue of stottite from Tsumeb, Namibia

Published online by Cambridge University Press:  11 November 2024

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
Joy Désor
Affiliation:
Independent Researcher, Bad Homburg, Germany
Mark D. Welch
Affiliation:
Natural History Museum, London, UK
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA;
Gerhard Möhn
Affiliation:
Independent Researcher, Niedernhausen, Germany
*
Corresponding author: Anthony R. Kampf; Email: [email protected]

Abstract

The new mineral zincostottite (IMA2024-024), ZnGe(OH)6, was found on specimens from the Tsumeb mine, Tsumeb, Namibia, where it is a secondary oxidation-zone mineral. It occurs as heavily etched remnants of equant or tabular crystals, up to ∼1 mm in diameter. Crystals are colourless and transparent, with vitreous to subadamantine lustre and a white streak. The mineral is brittle with irregular stepped fracture. The Mohs hardness is ∼4.5. Cleavage is good on {100} and poor on {001}. The calculated density is 3.834 g·cm–3. Optically, zincostottite is uniaxial (–) with ω = 1.785(5) and ε = 1.765(5) (white light). The empirical formula is (Zn0.77Fe3+0.23)Σ1.00Ge1.00O6H5.77. Zincostottite is tetragonal, space group P42/n, with cell parameters: a = 7.4522(18), c = 7.4000(8) Å, V = 411.0(2) Å3 and Z = 4. The crystal structure (R1 = 2.65% for 452 I > 2σI reflections) is the same as that of stottite with Zn in place of Fe2+

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Peter Leverett

References

Basciano, L.C., Peterson, R.C., Roeder, P.L. and Swainson, I. (1998) Description of schoenfliesite, MgSn(OH)6, and roxbyite, Cu1.72S, from a 1375 BC shipwreck, and Rietveld neutron-diffraction refinement of synthetic schoenfliesite, wickmanite, MnSn(OH)6, and burtite CaSn(OH)6. The Canadian Mineralogist, 36, 12031210.Google Scholar
Birch, W.D., Pring, A., Reller, A. and Schmalle, H.D. (1993) Bernalite, Fe(OH)3, a new mineral from Broken Hill, New South Wales: Description and structure. American Mineralogist, 78, 827834.Google Scholar
Evans, H.A. Wu, Y. Seshadri, R. and Cheetham, A.K. (2020) Perovskite-related ReO3 materials. Nature Reviews Materials, 5, 196213.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Gagné, O.C. and F.C, Hawthorne (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gebhard, G. (1999) Tsumeb II. A Unique Mineral Locality. GG Publishing, Grossenseifen, Germany.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R. (1982) Jeanbandyite: a new member of the stottite group from Llallagua, Bolivia. The Mineralogical Record, 13, 235239.Google Scholar
Kampf, A.R., Désor, J., Ma, C., Welch, M.D. and Möhn, G. (2024) Zincostottite, IMA 2024-024. CNMNC Newsletter 81. Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2024.77.Google Scholar
Kleppe, A.K., Welch, M.D., Crichton, W.A. and Jephcoat, A.P. (2012) Phase transitions in hydroxide perovskites: a Raman spectroscopic study of stottite, FeGe(OH)6 to 21 GPa. Mineralogical Magazine, 76, 949962.Google Scholar
Lafuente, B., Yang, H. and Downs, R.T. (2015) Crystal structure of tetrawickmanite Mn2+Sn(OH)6. Acta Crystallographica, E71, 234237.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Marshukova, N.K., Palovskii, A.B., Sidorenko, G.A. and Christyakova, N.I. (1981) Vismirnovite, ZnSn(OH)6, and natanite, FeSn(OH)6, new tin minerals. Zapiski Vesesoyuznogo Mineralogicheskogo Obschchestva, 110, 492500.Google Scholar
Mitchell, R.H., Welch, M.D. and Chakmouradian, A.R. (2017) Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineralogical Magazine, 81, 411461.Google Scholar
Morgenstern-Badarau, I. (1976) Effet Jahn-Teller et structure cristalline de l’hydroxide mushistonite CuSn(OH)6. Journal of Solid State Chemistry, 17, 399406.Google Scholar
Moore, P.B and Smith, J.V. (1967) Wickmanite, Mn+2[Sn+4(OH)6], a new mineral from Långban. Arkiv för Mineralogi och Geology, 4, 395399.Google Scholar
Mullica, D.F., Beall, G.W. and Milligan, W.O. (1979) The crystal structure of cubic In(OH)3 by X-ray and neutron diffraction methods. Journal of Inorganic Nuclear Chemistry 41, 277282.Google Scholar
Najorka, J., Kleppe, A.K., and Welch, M.D. (2019) The effect of pressure and composition on Cu-bearing hydroxide perovskite Physics and Chemistry of Minerals 46, Google Scholar
Ross, C.R., Bernstein, L.R. and Waychunas, G.A. (1988) Crystal-structure refinement of stottite, FeGe(OH)6. American Mineralogist, 73, 657661.Google Scholar
Ross, N.L., Chaplin, T.D. and Welch, M.D. (2002) Compressibility of stottite, FeGe(OH)6: An octahedral framework with protonated O atoms. American Mineralogist, 87, 14101414.Google Scholar
Sheldrick, G.M. (2015a) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
von Bezing, L. (2007) Namibia - Minerals and Localities. Bode Verlag GmbH, Haltern, Germany.Google Scholar
Welch, M.D., Crichton, W.A. and Ross, N.L. (2005) Compression of the perovskite-related mineral bernalite Fe(OH)3 to 9 GPa and a reappraisal of its structure. Mineralogical Magazine, 69, 309315.Google Scholar
Welch, M.D. and Kampf, A.R. (2017) Stoichiometric partially-protonated states in hydroxide perovskites: the jeanbandyite enigma revisited. Mineralogical Magazine, 81, 297303.Google Scholar
Welch, M.D. and Kleppe, A.K. (2016) Polymorphism of the hydroxide perovskite Ga(OH)3 and possible proton-driven transformational behaviour. Physics and Chemistry of Minerals, 43, 515526.Google Scholar
Welch, M.D., Najorka, J., and Wunder, B. (2024) Crystal structure, hydrogen bonding, and high-pressure behaviour of the hydroxide perovskite MgSi(OH)6: A phase relevant to the deep subduction of hydrated oceanic crust. American Mineralogist, 109, 255264.Google Scholar
Welch, M.D., Najorka, J., Kleppe, A.K., Kampf, A.R., and Spratt, J. (2025) Nancyrossite, FeGeO6H5, a new hydroxyperovskite mineral, Mineralogical Magazine, 89, doi:10.1180/mgm.2025.10.Google Scholar
Williams, S.A. (1985) Mopungite, a new mineral from Nevada. The Mineralogical Record, 16, 7374.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography, Volume C. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Wright, S.E., Foley, J.A., and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524531.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material
Download Kampf et al. supplementary material(File)
File 349.7 KB