Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-24T13:35:05.828Z Has data issue: false hasContentIssue false

Xenotime-(Gd), a new Gd-dominant mineral of the xenotime group from the Zimná Voda REE–U–Au quartz vein, Prakovce, Western Carpathians, Slovakia

Published online by Cambridge University Press:  14 November 2024

Martin Ondrejka*
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia
Peter Bačík
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
Juraj Majzlan
Affiliation:
Institute of Geosciences, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany
Pavel Uher
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia
Štefan Ferenc
Affiliation:
Department of Geography and Geology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
Tomáš Mikuš
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 01, Banská Bystrica, Slovakia
Martin Števko
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Praha-Horní Počernice, Czech Republic
Mária Čaplovičová
Affiliation:
Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, 812 43 Bratislava, Slovakia
Stanislava Milovská
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 01, Banská Bystrica, Slovakia
Alexandra Molnárová
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
Christiane Rößler
Affiliation:
Bauhaus University, Coudraystrasse 11, 99423 Weimar, Germany
Christian Matthes
Affiliation:
Bauhaus University, Coudraystrasse 11, 99423 Weimar, Germany
*
Corresponding author: Martin Ondrejka; Email: [email protected]

Abstract

Xenotime-(Gd), ideally GdPO4, is a new mineral of the xenotime group. It was discovered at the Zimná Voda REE–U–Au occurrence near Prakovce, Western Carpathians, Slovakia. It forms rare crystal domains (≤20 μm, usually ≤10 μm in size) in Gd-rich xenotime-(Y) crystals (≤100 μm in size), in association with monazite-group minerals, uraninite, fluorapatite and uranyl arsenates–phosphates. The hydrothermal REE–U–Au mineralisation occurs in a quartz–muscovite vein, hosted in Palaeozoic phyllites near exocontact with Permian granites. The density is 5.26 g/cm3, based on calculated average empirical formula and unit-cell parameters. The average chemical composition (n = 6) measured by electron microprobe is as follows (wt.%): P2O5 30.1, As2O5 0.5, SiO2 0.2, UO2 0.3, Y2O3 15.7, (La, Ce, Pr, Nd)2O3 0.5, Sm2O3 5.7, Eu2O3 1.4, Gd2O3 29.2, Tb2O3 3.9, Dy2O3 10.4, Ho2O3 0.4, (Er, Tm, Yb, Lu)2O3 2.1, (Ca, Fe, Pb, Mn, Ba)O 0.1, total 100.5. The corresponding empirical formula calculated on the basis of 4 oxygen atoms is: (Gd0.37Y0.32Dy0.13Sm0.08Tb0.05Eu0.02Er0.01Tm0.01Nd0.01…)Σ1.01(P0.98As0.01Si0.01)O4. The empirical formula of the Gd-richest composition is: (Gd0.38Y0.31Dy0.13Sm0.08Tb0.05Eu0.02Er0.01Nd0.01Ho0.01…)Σ1.01(P0.98As0.01Si0.01)O4. The ideal formula is GdPO4. The xenotime-type structure has been confirmed by micro-Raman spectroscopy and a Fast Fourier-Transform pattern using HRTEM. Xenotime-(Gd) is tetragonal, space group I41/amd, a = 6.9589(5) Å, c = 6.0518(6) Å, V = 293.07(3) Å3 and Z = 4. The new mineral is named as an analogue of xenotime-(Y) and xenotime-(Yb) with Gd dominant among the REE. The middle REE enrichment of xenotime-(Gd) is shared with the associated monazite-(Gd) and Gd-rich hingganite-(Y). This exotic REE signature and precipitation of Gd-bearing minerals is a product of selective complexing and enrichment in MREE in low-temperature hydrothermal fluids by alteration of uraninite, brannerite and fluorapatite on a micro-scale. The existence of xenotime-(Gd) and monazite-(Gd) is the first naturally documented dimorphism among REE phosphates. In addition, xenotime-(Gd) is only the third approved Gd-dominant mineral, after lepersonnite-(Gd) and monazite-(Gd).

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Mihoko Hoshino

References

Åmli, R. and Griffin, W.L. (1975) Microprobe analysis of REE minerals using empirical correction factors. American Mineralogist, 60, 599606.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (editors) (2024) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/ (visited 17 August 2024).Google Scholar
Bajaník, Š., Hanzel, V., Mello, J., Pristaš, J., Reichwalder, P., Snopko, L., Vozár, J. and Vozárová, A. (1983) Explanation to Geological Map of the Slovenské Rudohorie Mts.—Eastern part, 1:50 000, 223 pp. State Geological Institute of D. Štúr, Bratislava [in Slovak].Google Scholar
Bayliss, P. and Levinson, A.A. (1988) A system of nomenclature for rare-earth mineral species: Revision and extension. American Mineralogist, 73, 422423.Google Scholar
Begun, G.M., Beall, G.W., Boatner, L.A. and Gregor, W.J. (1981) Raman spectra of the rare earth orthophosphates. Journal of Raman Spectroscopy, 11, 273278.CrossRefGoogle Scholar
Bogatikov, O.A., Mokhov, A.V., Kartashov, P.M., Magazina, L.O., Koporulina, E.V., Ashikhmina, N.A. and Gorshkov, A.I. (2004) Selectively Gd-enriched micro- and nano-sized minerals in the lunar regolith from the Crisium Mare. Doklady Akademii Nauk, 394, 8184 [in Russian].Google Scholar
Buck, H.M., Cooper, M.A., Černý, P., Grice, J.D., and Hawthorne, F.C. (1999) Xenotime-(Yb), YbPO4, a new mineral species from the Shatford lake pegmatite group, Southeastern Manitoba, Canada. The Canadian Mineralogist, 37, 13031306.Google Scholar
Celebi, A.S. and Kolis, J.W. (2002) Hydrothermal synthesis of xenotime-type gadolinium orthophosphate. Journal of the American Ceramic Society, 85, 253254.CrossRefGoogle Scholar
Clavier, N., Podor, R. and Dacheux, N. (2011) Crystal chemistry of the monazite structure. Journal of the European Ceramic Society, 31, 941976.CrossRefGoogle Scholar
Clavier, N., Mesbah, A., Szenknect, S. and Dacheux, N. (2018) Monazite, rhabdophane, xenotime and churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 205, 8594.CrossRefGoogle ScholarPubMed
Deliens, M. and Piret, P. (1982) Bijvoetite et lepersonnite carbonates hydratés d'uranyle et des terres rares de Shinkolobwe, Zaïre. The Canadian Mineralogist, 20, 231238 [in French].Google Scholar
Demartin, F., Pilati, T., Diella, V., Donzelli, S., Gentile, P. and Gramaccioli, C.M. (1991) The chemical composition of xenotime from fissures and pegmatites in the Alps. The Canadian Mineralogist, 29, 6975.Google Scholar
Downs, R.T. and Hall-Wallace, M. (2003) The American Mineralogist Crystal Structure Database. American Mineralogist 88, 24250.Google Scholar
Ferenc, Š., Števko, M., Mikuš, T., Milovská, S., Kopáčik, R. and Hoppanová, E. (2021) Primary minerals and age of the hydrothermal quartz veins containing U-Mo-(Pb, Bi, Te) mineralization in the Majerská valley near Čučma (Gemeric Unit, Spišsko-Gemerské Rudohorie Mts., Slovak Republic). Minerals, 11, 629.CrossRefGoogle Scholar
Förster, H.-J. (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. Part II: Xenotime. American Mineralogist, 83, 13021315CrossRefGoogle Scholar
Förster, H.-J. and Rhede, D. (1995) Composition of monazite and xenotime from the Fichtelgebirge granites—an electron microprobe study. Berichte der Deutschen Mineralogischen Gesellschaft. Beihefte zum European Journal of Mineralogy, 7, 68 [Conference proceedings].Google Scholar
Franz, G., Andrehs, G. and Rhede, D. (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. European Journal of Mineralogy, 8, 10971118.CrossRefGoogle Scholar
Franz, G., Morteani, G. and Rhede, D. (2015) Xenotime-(Y) formation from zircon dissolution–precipitation and HREE fractionation: An example from a metamorphosed phosphatic sandstone, Espinhaço fold belt (Brazil). Contributions to Mineralogy and Petrology, 170, 37.CrossRefGoogle Scholar
Gratz, R. and Heinrich, W. (1998) Monazite-xenotime thermometry. III. Experimental calibration of the partitioning of gadolinium between monazite and xenotime. European Journal of Mineralogy, 10, 579588.CrossRefGoogle Scholar
Hay, R.S., Mogilevsky, P. and Boakye, E. (2013) Phase transformations in xenotime rare-earth orthophosphates. Acta Materialia, 61, 69336947.CrossRefGoogle Scholar
Hefferman, K.M., Ross, N.L., Spencer, E.C. and Boatner, L.A. (2016) The structural response of gadolinium phosphate to pressure. Journal of Solid State Chemistry, 241, 180186.CrossRefGoogle Scholar
Ivanička, J., Snopko, L., Snopková, P. and Vozárová, A. (1989) Gelnica group–Lower unit of Spišsko-Gemerské Rudohorie Mts. (West Carpathians), Early Paleozoic. Geologica Carpathica, 40, 483501.Google Scholar
Kohút, M. and Stein, H. (2005) Re-Os molybdenite dating of granite-related Sn-W-Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia. Mineralogy and Petrology, 85, 117129.CrossRefGoogle Scholar
Kolitsch, U. and Holtstam, D. (2004) Crystal chemistry of REEXO4 compounds (X = P, As,V). II. Review of REEXO4 compounds and their stability fields. European Journal of Mineralogy, 16, 117126.CrossRefGoogle Scholar
Lenz, Ch., Nasdala, L., Talla, D., Hauzenberger, Ch., Seitz, R. and Kolitsche, U. (2015) Laser induced REE3+ photoluminescence of selected accessory minerals — An “advantageous artefact” in Raman spectroscopy. Chemical Geology, 415, 116.CrossRefGoogle Scholar
Levinson, A.A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152158.Google Scholar
Li, W., Ding, X., Meng, C., Ch, Ren., Wu, H. and Yang, H. (2018) Phase structure evolution and chemical durability studies of Gd1−xYbxPO4 ceramics for immobilization of minor actinides. Journal of Material Science, 53, 63666377.CrossRefGoogle Scholar
Lösch, H., Hirsch, A., Holthausen, J., Peters, L, Xiao, B., Neumeier, S., Schmidt, M. and Huittinen, N. (2019) A spectroscopic investigation of Eu3+ Incorporation in LnPO4 (Ln = Tb, Gd1-xLux, X = 0.3, 0.5, 0.7, 1). Ceramics, Frontiers in Chemistry, 7, 94.CrossRefGoogle ScholarPubMed
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Masau, M., Černý, P. and Chapman, R. (2000) Dysprosian xenotime-(Y) from the Annie Claim #3 granitic pegmatite, Southeastern Manitoba, Canada: Evidence of the tetrad effect? The Canadian Mineralogist, 38, 899905.CrossRefGoogle Scholar
Masau, M., Černý, P., Cooper, M.A., Chapman, R. and Grice, J.D. (2002) Monazite-(Sm), a new member of the monazite group from the Annie Claim #3 granitic pegmatite, Southeastern Manitoba. The Canadian Mineralogist, 40, 16491655.CrossRefGoogle Scholar
Meng, C., Ding, X., Zhao, J., Li, W., C, Ren. and Yang, H. (2016) Preparation and characterization of cerium-gadolinium monazites as ceramics for the conditioning of minor actinides. Progress in Nuclear Energy, 89, 16.CrossRefGoogle Scholar
Miyawaki, R. and Nakai, I. (1993) Crystal structures of rare earth minerals. Pp. 249518 in: Handbook on the Physics and Chemistry of Rare Earths, Vol.16., Chapter 108 (Gschneidner, K. A. Jr. and Eyring, L., editors). Elsevier Science Publishers B.V., Amsterdam.Google Scholar
Mokhov, A.V., Kartashov, P.M., Gornostaeva, T.A., Bogatikov, O.A. and Ashikhmina, T.A. (2011) New phases of lanthanoids and actinoids from the regolith samples delivered by the Luna-24. Doklady Earth Sciences, 437, 479482.CrossRefGoogle Scholar
Mullica, D.F., Grossie, D.A. and Boatner, L.A. (1986) Crystal structure of 1:1 gadolinium/ytterbium orthophosphate. Inorganica Chimica Acta, 118, 173176.CrossRefGoogle Scholar
Mullica, D.F., Sappenfield, E.L. and Boatner, L.A. (1990) A structural investigation of several mixed lanthanide orthophosphates. Inorganica Chimica Acta, 174, 155159.CrossRefGoogle Scholar
Muñoz, A. and Rodríguez-Hernández, P. (2018) High-pressure elastic, vibrational and structural study of monazite-type GdPO4 from ab initio simulations. Crystals, 8, 209.CrossRefGoogle Scholar
Ni, Y., Hughes, J.M. and Mariano, A.N. (1995) Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 2126.CrossRefGoogle Scholar
Novotný, L. and Čížek, P. (1979) New occurrence of uranium and gold, southern from Prakovce in Spišsko-gemerské Rudohorie Mts. Mineralia Slovaca, 11, 188190. [In Slovak]Google Scholar
Ondrejka, M., Ferenc, Š., Majzlan, J., Števko, M., Kopáčik, R., Voleková, B., Milovská, S., Göttlicher, J., Steininger, R., Mikuš, T., Uher, P., Biroň, A., Sejkora, J. and Molnárová, A. (2023a) Secondary uranyl arsenates–phosphates and Sb–Bi-rich minerals of the segnitite–philipsbornite series in the oxidation zone at the Prakovce-Zimná Voda REE–U–Au quartz-vein mineralisation, Western Carpathians, Slovakia, Mineralogical Magazine, 87, 849865.CrossRefGoogle Scholar
Ondrejka, M., Uher, P., Ferenc, Š., Majzlan, J., Pollok, K., Mikuš, T., Milovská, S., Molnárová, A., Škoda, R., Kopáčik, R., Kurylo, S. and Bačík, P. (2023b) Monazite-(Gd), a new Gd-dominant mineral of the monazite group from the Zimná Voda REE–U–Au quartz vein, Prakovce, Western Carpathians, Slovakia, Mineralogical Magazine, 87, 568574.CrossRefGoogle Scholar
Ondrejka, M., Uher, P., Ferenc, Š., Milovská, S., Mikuš, T., Molnárová, A., Škoda, R., Kopáčik, R. and Bačík, P. (2023c) Gadolinium-dominant monazite and xenotime: selective hydrothermal enrichment of middle REE during low-temperature alteration of uraninite, brannerite and fluorapatite (the Zimná Voda REE–U–Au quartz vein, Western Carpathians, Slovakia), American Mineralogist, 108, 754768.CrossRefGoogle Scholar
Ondrejka, M., Bačík, P., Majzlan, J., Uher, P., Ferenc, Š., Števko, M., Čaplovičová, M., Milovská, S., Mikuš, T., Rößler, C., Matthes, C. and Molnárová, A. (2024) Xenotime-(Gd), IMA 2023-091. CNMNC Newsletter 77. Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2024.5Google Scholar
Pasero, M. (2024) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/Google Scholar
Repina, S.A. (2010) Zoning and sectoriality of the florencite and xenotime group minerals from quartz veins, the Subpolar Urals. Geology of Ore Deposits, 52, 821836.CrossRefGoogle Scholar
Repina, S.A. (2011) Fractionation of REE in the xenotime and florencite paragenetic association from Au-REE mineral occurrences of the Nether-Polar Urals. Geochemistry International, 49, 868887.CrossRefGoogle Scholar
Repina, S.A., Khiller, V.V. and Makagonov, E.P. (2014) Microheterogeneity of crystal growth zones as a result of REE fractionation. Geochemistry International, 52, 10571071.CrossRefGoogle Scholar
Rodriguez-Liviano, S., Becerro, A.I., Alcántara, D., Grazú, V., de la Fuente, J.M. and Ocaña, M. (2013) Synthesis and properties of multifunctional tetragonal Eu:GdPO4 nanocubes for optical and magnetic resonance imaging applications. Inorganic Chemistry, 52, 647654.CrossRefGoogle ScholarPubMed
Rojkovič, I., Háber, M. and Novotný, L. (1997) U-Au-Co-Bi-REE mineralization in the Gemeric unit (Western Carpathians, Slovakia). Geologica Carpathica, 48, 303313.Google Scholar
Rojkovič, I., Konečný, P., Novotný, L., Puškelová, Ľ. and Streško, V. (1999) Quartz-apatite-REE vein mineralization in Early Paleozoic rocks of the Gemeric Superunit, Slovakia. Geologica Carpathica, 50, 215227.Google Scholar
Seredin, V.V. (1996) Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 30, 101129.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, 9th Edition. Berlin and Stuttgart (E. Schweizerbart'sche Verlagsbuchhandlung), 870 pp.Google Scholar
Švecová, E., Čopjaková, R., Losos, Z., Škoda, R., Nasdala, L. and Cícha, J. (2016) Multi-stage evolution of xenotime–(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study. Mineralogy and Petrology, 110, 747765.CrossRefGoogle Scholar
Twardak, D., Pieczka, A., Kotowski, J. and Nejbert, K. (2023) Mineral chemistry and genesis of monazite-(Sm) and monazite-(Nd) from the Blue Beryl Dyke of the Julianna pegmatite system at Piława Górna, Lower Silesia, Poland. Mineralogical Magazine, 87, 575581.CrossRefGoogle Scholar
Ushakov, S.V., Helean, K.B., Navrotsky, A. and Boatner, L.A. (2001) Thermochemistry of rare-earth orthophosphates. Journal of Materials Research, 16, 26232633.CrossRefGoogle Scholar
Vegard, L. (1927) XLVII. The structure of xenotime and the relation between chemical constitution and crystal structure. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7, 4, 22, 511525.CrossRefGoogle Scholar
Villaseñor, G., Catlos, E.J., Broska, I., Kohút, M., Hraško, Ľ., Aguilera, K., Etzel, T.M., Kyle, R. and Stockli, D.F. (2021) Evidence for widespread mid-Permian magmatic activity related to rifting following the Variscan orogeny (Western Carpathians). Lithos, 390–391, 106083.Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Yahiaoui, Z., Hassairi, M. and Dammak, M. (2017) Synthesis and optical spectroscopy of YPO4:Eu3+ orange–red phosphors. The Journal of Electronic Materials, 46, 47654773.CrossRefGoogle Scholar
Supplementary material: File

Ondrejka et al. supplementary material

Ondrejka et al. supplementary material
Download Ondrejka et al. supplementary material(File)
File 1.1 KB