Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T05:21:15.182Z Has data issue: false hasContentIssue false

Waimirite-(Y), orthorhombic YF3, a new mineral from the Pitinga mine, Presidente Figueiredo, Amazonas, Brazil and from Jabal Tawlah, Saudi Arabia: description and crystal structure

Published online by Cambridge University Press:  02 January 2018

Daniel Atencio*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, São Paulo, SP, Brazil
Artur C. Bastos Neto
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul. Avenida Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
Vitor P. Pereira
Affiliation:
Instituto de Geociências, Universidade Federal do Rio Grande do Sul. Avenida Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
José T. M. M. Ferron
Affiliation:
Programa de Pós-graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Brazil
M. Hoshino
Affiliation:
Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
T. Moriyama
Affiliation:
Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
Y. Watanabe
Affiliation:
Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
R. Miyawaki
Affiliation:
Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
José M. V. Coutinho
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, São Paulo, SP, Brazil
Marcelo B. Andrade
Affiliation:
São Carlos Institute of Physics, University of São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brazil
Kenneth Domanik
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ, 85721-0092, USA
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
K. Momma
Affiliation:
Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
H. Hirano
Affiliation:
Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
M. Tsunematsu
Affiliation:
Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
*

Abstract

Waimirite-(Y) (IMA 2013-108), orthorhombic YF3, occurs associated with halloysite, in hydrothermal veins (up to 30 mm thick) cross-cutting the albite-enriched facies of the A-type Madeira granite (∼1820 Ma), at the Pitinga mine, Presidente Figueiredo Co., Amazonas State, Brazil. Minerals in the granite are 'K-feldspar', albite, quartz, riebeckite, 'biotite', muscovite, cryolite, zircon, polylithionite, cassiterite, pyrochlore-group minerals, 'columbite', thorite, native lead, hematite, galena, fluorite, xenotime-(Y), gagarinite-(Y), fluocerite-(Ce), genthelvite–helvite, topaz, 'illite', kaolinite and 'chlorite'. The mineral occurs as massive aggregates of platy crystals up to ∼1 μm in size. Forms are not determined, but synthetic YF3 displays pinacoids, prisms and bipyramids. Colour: pale pink. Streak: white. Lustre: non-metallic. Transparent to translucent. Density (calc.) = 5.586 g/cm3 using the empirical formula. Waimirite-(Y) is biaxial, mean n = 1.54–1.56. The chemical composition is (average of 24 wavelength dispersive spectroscopy mode electron microprobe analyses, O calculated for charge balance): F 29.27, Ca 0.83, Y 37.25, La 0.19, Ce 0.30, Pr 0.15, Nd 0.65, Sm 0.74, Gd 1.86, Tb 0.78, Dy 8.06, Ho 1.85, Er 6.38, Tm 1.00, Yb 5.52, Lu 0.65, O (2.05), total (97.53) wt.%. The empirical formula (based on 1 cation) is (Y0.69Dy0.08Er0.06Yb0.05Ca0.03Gd0.02Ho0.02Nd0.01Sm0.01Tb0.01Tm0.01Lu0.01)Σ1.00[F2.540.25O0.21]Σ3.00. Orthorhombic, Pnma, a = 6.386(1), b = 6.877(1), c = 4.401(1) Å, V = 193.28(7) Å3, Z = 4 (powder data). Powder X-ray diffraction (XRD) data [d in Å (I) (hkl)]: 3.707 (26) (011), 3.623 (78) (101), 3.438 (99) (020), 3.205 (100) (111), 2.894 (59) (210), 1.937 (33) (131), 1.916 (24) (301), 1.862 (27) (230). The name is for the Waimiri-Atroari Indian people of Roraima and Amazonas. A second occurrence of waimirite-(Y) is described from the hydrothermally altered quartz-rich microgranite at Jabal Tawlah, Saudi Arabia. Electron microprobe analyses gave the empirical formula (Y0.79Dy0.08Er0.05Gd0.03Ho0.02Tb0.01Tm0.01Yb0.01)Σ1.00[F2.85O0.080.07]Σ3.00. The crystal structure was determined with a single crystal from Saudi Arabia. Unit-cell parameters refined from single-crystal XRD data are a = 6.38270(12), b = 6.86727(12), c = 4.39168(8) Å, V = 192.495(6) Å3, Z = 4. The refinement converged to R1 = 0.0173 and wR2 = 0.0388 for 193 independent reflections. Waimirite-(Y) is isomorphous with synthetic SmF3, HoF3 and YbF3. The Y atom forms a 9-coordinated YF9 tricapped trigonal prism in the crystal structure. The substitution of Y for Dy, as well as for other lanthanoids, causes no notable deviations in the crystallographic values, such as unit-cell parameters and interatomic distances, from those of pure YF3.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastos Neto, A.C., Pereira, V.P., Pires, A.C., Barbanson, L. and Chauvet, A. (2013) Fluorine-rich xenotime from the Madeira world-class Nb-Ta-Sn deposit associated with the albite-enriched granite at Pitinga, Amazonia, Brazil. The Canadian Mineralogist, 50, 14531466.CrossRefGoogle Scholar
Bastos Neto, A.C., Ferron, J.T.M.M., Chauvet, A., Chemale, F., Lima, E.F., Barbanson, L. and Costa, C.F.M. (2014a) U-Pb dating of the Madeira Suite and structural control of the albite-enriched granite at Pitinga (Amazonia, Brazil): Evolution of the A-type magmatism and implications for the genesis of the Madeira Sn-Ta-Nb (REE, cryolite) world-class deposit. Precambrian Research, 243, 181196.CrossRefGoogle Scholar
Bastos Neto, A.C., Pereira, V.P., Atencio, D., Ferron, J.T.M.M. and Coutinho, J. (2014b) Waimirite-(Y), IMA 2013-108. CNMNC, Newsletter 19, February 2014, pages 167168. Mineralogical Magazine, 78, 165170.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bukvetskii, B.V. and Garashina, L.S. (1977) Crystalchemical investigation of the orthorhombic trifluorides of samarium, holmium, and ytterbium. Coordination Chemistry, 3, 791795.Google Scholar
Cheetham, A.K. and Norman, N. (1974) The structures of yttrium and bismuth trifluorides by neutron diffraction. Acta Chemica Scandinavica, A28, 5560.CrossRefGoogle Scholar
Cheetham, A.K., Fender, B.E.F., Fuess, H. and Wright, A.F. (1976) A powder neutron diffraction study of lanthanum and cerium trifluorides. Acta Crystallographica, B32, 9497.CrossRefGoogle Scholar
Chistyakova, M.B. and Kazakova, M.E. (1969) Fluocerite from Kazakhstan. Trudy Mineralogicheskogo Muzeya Akademiya Nauk SSSR, 19, 236238. [in Russian].Google Scholar
Chukanov, N.V (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht-Heidelberg-New York-London, pp. 17–16.CrossRefGoogle Scholar
Garashina, L.S. and Vishnyakov, Y.S. (1977) Structural changes in the series LnFeO3 and LnF3. Soviet Physics Crystallography, 22, 313315. [translated from Kristallografiya, 22, 547555.Google Scholar
Garashina, L.S., Sobolev, B.P., Aleksandrov, V.B. and Vishnyakov, Y.S. (1980) Crystal chemistry of rare earth fluorides. Soviet Physics Crystallography, 25, 171174.Google Scholar
Greis, O. (1976) Preparative, strukturelle und thermochemische Untersuchungen an Selten-Erd-Fluoriden under bedsonderer Berucksichtigung der Elemente Samarium, Europium, Thulium und Ytterbium. Inaugural-Dissertation, Albert-Ludwigs-Universitat, Freiburg, Germany, pp. 330.Google Scholar
Kollia, Z., Sarantopoulou, E., Cefalas, A.C., Nicolaides, C.A., Naumov, A.K., Semashko, V.V., Abdulsabirov, R.Y., Korableva, S.L. and Dubinskii, M.A. (1995) Vacuum-ultraviolet interconfigurational 4f3 ? 4f25d absorption and emission studies of the Nd3+ ion in KYF, YF, and YLF crystal hosts. Journal of the Optical Society of America B, 12, 782785.CrossRefGoogle Scholar
Kondratyuk, I.P., Loshmanov, A.A., Muradyan, L.A., Maksimov, B.A., Sirota, M.I., Krivandina, E.A. and Sobolev, B.P. (1988) Neutron-diffraction study on NdF3. Soviet Physics, Crystallography, 33, 5760.Google Scholar
Lage, M.M., Righi, A., Matinaga, F.M., Gesland, J.-Y. and Moreira, R.L. (2004) Raman-spectroscopic study of lanthanide trifluorides with the b-YF3 structure. Journal of Physics: Condensed Matter, 16, 32073218.Google Scholar
Minuzzi, O.R.R., Ferron, J.M.T.M., Bastos Neto, A.C. and Pereira, V.P. (2003) Primeira notícia da descoberta de waimirita e atroarita, dois novos minerais na Mina de Pitinga, AM, Brasil. Pesquisas em Geociências, 30, 99101.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology d a t a. Journ a l o f Appl i e d Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nakamuta, Y. (1999) Precise analysis of a very small mineral by an X-ray diffraction method. Journal of the Mineralogical Society of Japan, 28, 117121. [in Japanese with English abstract].CrossRefGoogle Scholar
Nowacki, W (1938) Die Kristallstruktur des kubischen Yttriumfluorids YF3. Zeitschrift für Kristallographie, 100, 242250.Google Scholar
Qian, L.W., Zai, J.T., Chen, Z., Zhu, J., Yuan, Y.P. and Qian, X.F. (2010) Control of the morphology and composition of yttrium fluoride via a salt-assisted hydrothermal method. CrystEngComm, 12, 99206.CrossRefGoogle Scholar
Rotereau, K., Gesland, J.Y., Daniel, P. and Bulou, A. (1993) Raman scattering study of Czochralski-grown yttrium fluoride single crystals. Materials Research Bulletin, 28, 813819.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sorokin, N.I., Sobolev, B.P. and Breiter, M.W. (2002) Specific features of anion transfer in HoF3 crystals at high temperatures. Physics of the Solid State, 44, 282285.CrossRefGoogle Scholar
Styles, M.T. and Young, B.R (1983) Fluocerite and its alteration products from the Afu Hills, Nigeria. Mineralogical Magazine, 47, 4146.CrossRefGoogle Scholar
Toraya, H. (1993) The determination of unit-cell parameters from Bragg reflection data using a standard reference material but without a calibration curve. Journal of Applied Crystallography, 26, 585590.CrossRefGoogle Scholar
Trnovcová, V., Garashina, L.S., Škubla, A., Fedorov, P.P., Čička, R., Krivandina, E.A. and Sobolev, B.P. (2003) Structural aspects of fast ionic conductivity of rare earth fluorides. Solid State Ionics, 157, 195201.CrossRefGoogle Scholar
Uvarov, N.F., Hairetdinov, E.F. and Boldyrev, V.V. (1984) Correlations between parameters of melting and conductivity of solid lonic compounds. Journal of Solid State Chemistry, 51, 5968.CrossRefGoogle Scholar
Watanabe, Y., Hoshino, M. and Moriyama, T. (2014) Jabal Tawlah, a heavy REE-rich prospect in northwest Saudi Arabia. 21st General Meeting of the International Mineralogical Association, Johannesburg, South Africa, Abstract p. 62. Wilson, A.J.C. (editor) (1992) International Tables for Crystallography, Volume C. Kluwer Academic Publishers, Dordrecht, The Netherlands, 883 pp. Zalkin, A. and Templeton, D.H. (1953) The crystal structures of YF3 and related compounds. Journal of the American Chemical Society, 75, 24532458.Google Scholar
Zalkin, A. and Templeton, D.H. (1985) Refinement of the trigonal crystal structure of lanthanum trifluoride with neutron diffraction data (fluocerite). Acta Crystallographica, B41, 9193.CrossRefGoogle Scholar