Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T17:02:42.592Z Has data issue: false hasContentIssue false

Vapnikite Ca3UO6 – a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel

Published online by Cambridge University Press:  05 July 2018

E. V. Galuskin*
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
I. O. Galuskina
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
J. Kusz
Affiliation:
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
K. M. Marzec
Affiliation:
Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, 30-348 Krakow, Poland
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
M. Murashko
Affiliation:
Systematic Mineralogy, 44, 11 th line V.O., apt. 76, Saint-Petersburg 199178, Russia

Abstract

The new mineral species vapnikite, Ca3UO6, was found in larnite pyrometamorphic rocks of the Hatrurim Formation at Jabel Harmun in the Judean desert, Palestinian Autonomy, Israel. Vapnikite is an analogue of the synthetic ordered double-perovskite β-Ca3UO6 and is isostructural with the natural fluorperovskite – cryolite Na3AlF6. Vapnikite Ca3UO6 (P21/n, Z = 2, a = 5.739(1), b = 5.951(1), c = 8.312(1) Å, β = 90.4(1)°, V = 283.9(1) Å3) forms yellow-brown xenomorphic grains with a strong vitreous lustre. Small grains up to 20−30 µm in size are wedged between larnite, brownmillerite and ye’elimite. Vapnikite has irregular fracture, cleavage and parting were not observed. The calculated density is 5.322 g cm−3, the microhardness is VHN25 = 534 kg mm−2 (mean of seven measurements) corresponding to the hardness of ∼5 on the Mohs scale. The crystal structure of vapnikite Ca3UO6 differs from that of its synthetic analogue β-Ca3UO6 by having a larger degree of Ca, U disorder. Vapnikite formed at the high-temperature retrograde stage of pyrometamorphism when larnite rocks were altered by fluids/melts of high alkalinity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M., Beckley, A.N. and Glasser, F.P. (1988) Influence of cement on the near-field environment and its specific interaction with uranium and iodine. Radiochimica Acta, 44-45, 255261.Google Scholar
Bentor, Y.K. (editor) (1960) Israel. In: Lexique Stratigraphique International, Asie, Vol. III, Sec. 10.2. Centre national de la recherche scientifique, Paris.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013a) Halamishite, IMA 2013-105. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013b) Negevite, IMA 2013-104. CNMNC Newsletter No. 19, February 2014, page 166; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013c) Transjordanite, IMA 2013-106. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013d) Zuktamrurite, IMA 2013-107. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013e) Murashkoite, IMA 2012-071. CNMNC Newsletter No. 15, February 2013, page 8; Mineralogical Magazine, 77, 112.Google Scholar
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Burg, A., Kolodny, Y. and Lyakhovsky, V. (1999) Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Israel Journal of Earth Sciences, 48, 209223.Google Scholar
Burns, P.C. (1999) The crystal chemistry of uranium. Pp. 23–90 in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: Polyhedral geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Cantrell, K.J., Heald, S.M., Arey, B.W. and Lindberg, M.J. (2011) Inhibited release of mobile contaminants from Hanford tank residual waste. Paper No. 11447 in: Waste Management 2011: Global Achievements and Challenges in Waste Management, February 27–March 3, 2011, Phoenix, Arizona. Waste Management Symposia Inc., Tucson, Arizona, USA.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1995) Diaboleite, Pb2Cu(OH)4Cl2, a defect perovskite structure with stereoactive lone-pair behaviour of Pb2+. The Canadian Mineralogist, 33, 11251129.Google Scholar
Galuskin, E.V., Armbruster, T., Galuskina, I.O., Lazic, B., Winiarski, A., Gazeev, V.M., Dzierżanowski, P., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Gurbanov, A.G. and Janeczek, J. (2011) Vorlanite (CaU6+)O4 – a new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 96, 188196.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Dubrovinsky, L.S. and Janeczek, J. (2012) Thermally induced transformation of vorlanite to “protovorlanite”: restoration of cation ordering in self-irradiated CaUO4. American Mineralogist, 97, 10021004.CrossRefGoogle Scholar
Galuskin, E., Galuskina, I., Lazic, B. and Vapnik, Ye. (2013a) Rock-forming P-bearing ternesite from pyrometamorphic rocks of the hatrurim formation, Israel. Mineralogia - Special papers, 41, 40.Google Scholar
Galuskin, E.V., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Ye. Dzierżanowski, P. and Murashko, M. (2013b) Aradite, IMA 2013-047. CNMNC Newsletter No. 17, October 2013, page 3001; Mineralogical Magazine, 77, 29973005.Google Scholar
Galuskin, E., Galuskina, I., Vapnik, Ye. Murashko, M., Prusik, K. and Dzierżanowski, P. (2013c) Oldhamite CaS and potentially new mineral CaCu2S2 from pyrometamorphic rock of the Hatrurim formation. Goldschmidt 2013, Conference Abstracts, Mineralogical Magazine, 77, 1134.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Sharygin, V.V., Galuskina, I.O., Krivovichev, S.V., Vapnik, Ye. Murashko, M., Dzierżanowski, P. and Wirth, R. (2013d) Fluorkyuygenite, IMA 2013-043. CNMNC Newsletter No. 17, October 2013, page 3000; Mineralogical Magazine, 77, 29973005.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Ye. Murashko, M., Włodyka, R. and Dzierżanowski, P. (2013e) Nabimusaite, IMA 2012- 057. CNMNC Newsletter No. 15, February 2013, page 5; Mineralogical Magazine, 77, 112.Google Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Vapnik, Ye., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2013g) Zadovite, IMA 2013-031. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 26952709.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Ye. Murashko, M. and Dzierżanowski, P. (2013f) Fluormayenite, IMA 2013-019. CNMNC Newsletter No. 16, August 2013, page 2705; Mineralogical Magazine, 77, 26952709.Google Scholar
Galuskin, E.V., Kusz, J., Armbruster, T., Galuskina, I.O., Marzec, K., Vapnik, Ye. and Murashko, M. (2013h) Vorlanite, (CaU6+)O4, from Jabel Harmun, Palestinian Autonomy, Israel. American Mineralogist, 98, 19381942.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Ye., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2013a) Harmunite, IMA 2012-045. CNMNC Newsletter No. 15, February 2013, page 2; Mineralogical Magazine, 77, 112.Google Scholar
Galuskina, I.O., Vapnik, Y., Prusik, K., Dzierżanowski, P., Murashko, M. and Galuskin, E.V. (2013b) Gurimite, IMA 2013-032. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 26952709.Google Scholar
Galuskina, I.O., Vapnik, Ye., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4 – a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Gorman-Lewis, D., Burns, P.C. and Fein, J.B. (2008) Review of uranyl mineral solubility measurements. Journal Chemical Thermodynamics, 40, 335352.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A. and McWilliams, M. (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chemical Geology, 122, 171184.CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of cryolite. The Canadian Mineralogist, 13, 377382.Google Scholar
Holc, J. and Goli, L. (1983) The synthesis and crystal structure of a-Ca3UO6. Journal of Solid State Chemistry, 48, 396400.CrossRefGoogle Scholar
Knyazev, A.V., Chernorukov, N.G., Dashkina, Z.S., Bulanov, E.N. and Ladenkov, I.V. (2011) Synthesis, structures, physicochemical properties, and crystalchemical systematics of MII 2AIIUO6 (MII = Pb, Ba, Sr; AII = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) compounds. Russian Journal of Inorganic Chemistry, 56, 888898.CrossRefGoogle Scholar
Kolodny, Y. and Gross, S. (1974) Thermal metamorphism by combustion of organic matter: isotopic and petrological evidence. Journal Geology, 82, 489506.CrossRefGoogle Scholar
Loopstra, B.O. and Rietveld, H.M. (1969) The structure of some alkaline-earth metal uranates. Acta Crystallographica, B25, 787791.CrossRefGoogle Scholar
Matthews, A. and Gross, S. (1980) Petrologic evolution of the Mottled Zone (Hatrurim) metamorphic complex of Israel. Israel Journal of Earth Sciences, 29, 93106.Google Scholar
Mitchell, R.H. (2002) Perovskites. Modern and Ancient. Almaz Press, Thunder Bay, Ontario, Canada, 317 pp.Google Scholar
Moroni, L.P. and Glasser, E.P. (1995) Reactions between cement components and U(VI) oxide. Waste Management, 15, 243254.CrossRefGoogle Scholar
Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, E., Britvin, S.N., Krivovichev, S.V., Polekhovsky, Yu.S. and Ivakin, Yu.D. (2010) Barioferrite BaFe3+ 12O19 – a new magnetoplumbitegroup mineral from Hatrurim Formation, Israel. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 139, 2231.[in Russian].Google Scholar
Novikov, I., Vapnik, Ye. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Picard, L. (1931) Geological research in the Judean Desert. Goldberg Press, Jerusalem, 108 pp.Google Scholar
Read, C.M., Bugaris, D.E. and zur Loye, H.-C. (2013) Single crystal growth and structural characterization of four complex uranium oxides: CaUO4, b-Ca3UO6, K4CaU3O12, and K4SrU3O12. Solid State Sciences, 17, 4045.CrossRefGoogle Scholar
Rouse, R.C. (1971) The crystal chemistry of diaboleite. Zeitschrift für Kristallographie, 134, 6980.Google Scholar
Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Ye., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+AlO8 – a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97111.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112122.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Vapnik, Ye. and Sharygin, V.V. (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413A, 474–480.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Zateeva, S.N., Sharygin, V.V. and Vapnik Ye. (2008) Pyrometamorphic rocks of the spurrite–merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Doklady Earth Sciences, 420, 608614.CrossRefGoogle Scholar
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22, 414438.CrossRefGoogle Scholar
Spencer, L.J. and Mountain, E.D. (1923) New leadcopper minerals from the Mendip Hills (Somerset). Mineralogical Magazine, 20, 6792.CrossRefGoogle Scholar
Van Duivenboden, H.C. and IJdo, D.J.W. (1986) Redetermination of tricalcium uranate(VI). A Rietveld refinement of neutron powder diffraction data. Acta Crystallographica, C42, 523525.Google Scholar
Vapnik, Ye., Sharygin, V.V., Sokol, E.V. and Shagam R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Supplementary material: PDF

Galuskin et al. supplementary material

Supplementary Table 1

Download Galuskin et al. supplementary material(PDF)
PDF 225.3 KB