Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T20:52:21.676Z Has data issue: false hasContentIssue false

Uranium-series disequilibrium studies of drillcore Km3 from the Kamlunge test-site, northern Sweden

Published online by Cambridge University Press:  05 July 2018

John A. T. Smellie*
Affiliation:
Swedish Geological Company, Box 1424, 751 44 Uppsala, Sweden

Abstract

Studies of the U decay series (238U-234U-230Th) have been carried out on samples from unaltered bedrock and highly altered fracture/crush zones from drillcore Km3 (Kamlunge test-site). The fracture zones are characterized by abundant iron oxide coatings (hematite and hydroxy iron oxides) resulting from the passage of hydrothermal solutions coeval with the Lina granite intrusion. Enrichments of U and Th, thought to be due to co-precipitation (or preferential sorption) processes together with the iron-oxides, are also present.

The isotopic results show that out of a total of twelve rock samples measured, six indicate isotopic disequilibrium mostly due to unequal depletions of 234U and 238U; one near-surface sample indicated some minor assimilation of U. The major fracture zones generally indicate removal of total U. This has resulted from interaction with groundwaters which are still marginally oxidizing, even at depths of 375 m.

Isotopic disequilibrium has occurred within recent geological times, i.e. during the last 0.5 Ma as imposed by the half-lives of 234U and 230Th. In terms of radioactive disposal considerations, the results are important in that: (1) the investigated bedrock environment (100–500 m) is generally reducing; however (2) there is some evidence to indicate that rock/water interactions, leading to the removal of total U, have resulted from the presence of less reducing groundwaters within those large-scale fracture/crush zones which intersect the bedrock surface.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbom, K., Ahlin, S., Eriksson, L., and Samuelsson, L. (1980) PRAV Rep. 4.16, Stockholm.Google Scholar
Albino, B., Nilsson, G., Stejskal, V., and Stenberg, L. (1983) Swedish Geological Company (SGAB) Imernal Report (IRAP 83022).Google Scholar
Albino, B., Nilsson, G. and Stenberg, L. (1982) Ibid. (BRAP 82111).Google Scholar
Almén, K., Andersson, O., Hansson, K., Johansson, B. E., Nilsson, G., Wikberg, P., and Ahagen, H. (1983) KBS Technical Rep., 83-44.Google Scholar
Carlsten, S., Duran, O., and Kautsky, F. (1982) Swedish Geological Company (SGAB) Internal Report.Google Scholar
Cherdynstev, V. V. (1955) Proc. Third Session Comm: Absolute age determinations of geological formations, p. 175.Google Scholar
Cherdynstev, V. V. (1971) Uranium-234. Israel Program for Scientific Translations, Jerusalem.Google Scholar
Collett, L. S. (1959) In Overvoltage Research and Geophysical Applications (Wait, J. R., ed.). Pergamon Press, London, 5070.CrossRefGoogle Scholar
Danielson, J. (1983) Swedish Geological Company (SGAB) Internal Report.Google Scholar
Dumiec, S., Holm, E., and Nilsson, U., A rapid method for determination of uranium in environmental samples by alpha spectrometry (in prep.).Google Scholar
Fleischer, R. L., and Raabe, O. G. (1978) Geochim. Cosmochim. Acta, 42, 973-8.CrossRefGoogle Scholar
Gasgoyne, M. (1982) Can. Nuc. Soc. Int. Conf. on Radioactive Waste Management. Sept. Winnipeg.Google Scholar
Ivanovich, M., and Harmon, R. S. (1982) Uranium series disequilibrium: Applications to environmental problems. Oxford Series Publication.Google Scholar
Kigoshi, K. (1971) Science, 173, 47-8.CrossRefGoogle Scholar
Kleeman, J. D., and Lovering, J. F. (1967) Ibid. 156, 512-13.Google Scholar
Koide, M., and Goldberg, E. D. (1965) In Progress in Oceanography (Sears, M., ed.). Pergamon Press, 3, 173-7.Google Scholar
Kronfeld, J. (1974) Earth Planet. Sci. Lett. 27, 327-30.CrossRefGoogle Scholar
Lundqvist, T. (1979) SGU, Ser. C. 768.Google Scholar
Ödman, O. (1957) SGU, Ca 41.Google Scholar
Osmond, J. K. and Cowart, J. B. (1976) At. Energy Rev. 14/4, 62179.Google Scholar
Osmond, J. K. and Ivanovich, M. (1983) Int. J. Appl Rad. Isot. I, 283308.Google Scholar
Perttunen, V. (1980) Stratigraphy of the Peräpohja schist in the eastern part of the Baltic shield. Proc. Finnish-Soviet Symposium, Finland (August).Google Scholar
Rosholt, J. N. (1959) U.S. Geol. Bull. 1084-A.Google Scholar
Rosholt, J. N. (1980) U.S. Geol. Survey Open-file Report, 80-1087.Google Scholar
Rosholt, J. N. (1983) J. Geophys. Res. 88, 7315-30.CrossRefGoogle Scholar
Rosholt, J. N., Doe, B. R., and Tatsumoto, M. (1966) Geol. Soc. Am. Bull. 77, 9871004.CrossRefGoogle Scholar
Rosholt, J. N., Shields, W. R., and Garner, E. L. (1963) Science, 139, 224-6.CrossRefGoogle Scholar
Schwarcz, H. P., Gascoyne, M., and Ford, D. C. (1982) Chem. Geol. 36, 87102.CrossRefGoogle Scholar
Smellie, J. A. T. (1982) KBS Technical Rep. 82-15.Google Scholar
Smellie, J. A. T. and Rosholt, J. N. (1984) Lithos, 17, 215-25.CrossRefGoogle Scholar
Thurber, D. L. (1962) J. Geophys. Res. 67, 4518-20.CrossRefGoogle Scholar
Tirèn, S., Ericsson, L., and Henkel, H. (1981) PRAV Rep. 4.36, Stockholm.Google Scholar
Welin, E., Christiansson, K., and Nilsson, Ü. (1970) Geol. För. Stockh. Förh. 92, 336, 346.CrossRefGoogle Scholar
Welin, E., Christiansson, K., and Nilsson, Ü. (1971) SGU, Ser. C. 666.Google Scholar
Wikberg, P., Grenthe, I., and Axelsen, K. (1983) KBS Technical Rep. 83-40.Google Scholar
Zielinski, R. A., Peterman, Z. E., Stuckless, J. S., Rosholt, J. N., and Nkomo, I. T. (1981) Contrib. Mineral. Petrol. 78, 209-19.CrossRefGoogle Scholar