Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T18:58:34.819Z Has data issue: false hasContentIssue false

Trace element distributions between the perthite phases of alkali feldspars from pegmatites

Published online by Cambridge University Press:  05 July 2018

R. A. Mason*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 USA

Abstract

The distribution of various trace elements between the K-feldspar and albite phases of perthites from several pegmatites was determined by ion microprobe. Ranges in distribution coefficients (wt. % in K-feldspar/wt. % in albite) are: Li, 1.2–780; Mg, 0.2–1.1; P, 0.1–17; Ca, 0.02–1.6; Cs, 32–820; Ba, 24–284; Pb, 1.6–30; Fe, 0.3–0.7; Rb, 59–5505; Sr, 1.3–5.1. The trace elements are zoned within the K-feldspar lamellae and the profiles are interpreted as the result of cross coefficients in the diffusion matrix.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Earth Sciences, Bullard Laboratories, Madingley Rise, Cambridge CB3 0EZ.

References

Foland, K. A. (1972) Abstr. 2.8. Program for Advanced Study Institute on Feldspars. July 1972. Manchester.Google Scholar
Glansdorff, P., and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. (Wiley).Google Scholar
Goldsmith, J. R., and Newton, R. C. (1974) In The Feldspars (MacKenzie, W. S. and Zussman, J., eds.), Manchester Univ. Press, 337-59 .Google Scholar
Gordienko, V. V., and Kamentsev, I. Ye. (1969) Geochem. Int. 6, 180-92.Google Scholar
Lally, J. S., Heuer, A. H., and Nord, G. L. Jr., (1976) In Electron Microscopy in Mineralogy (Wenk, H.-R. et al., eds.), Springer, Heidelberg, 214-19.CrossRefGoogle Scholar
Long, D. E. (1978) Geochim. Cosmochim. Acta, 42, 833-46.CrossRefGoogle Scholar
Loomis, T. P. (1978a) Am. J. Sci. 278, 1099-118.CrossRefGoogle Scholar
Loomis, T. P. (1978b) Ibid. 278, 1119-37.Google Scholar
Mason, R. A. (1980) Geol. Soc. Am. Abstr. with programs 12, (7), 477.Google Scholar
Mason, R. A., Smith, J. V., Dawson, J. B., and Treves, S. B. (1982) Mineral. Mag. 46, 711.CrossRefGoogle Scholar
Nagy, K., and Giletti, B. J. (1980) Geol. Soc. Am. Abstr. with programs, 12, (7), 490.Google Scholar
Onuma, N., Higuchi, H., Wakita, H., and Nagasawa, H. (1968) Earth Planet. Sci. Lett. 5, 47-51.CrossRefGoogle Scholar
Petroviç, R. (1974) In The Feldspars (W. S. MacKenzie and J. Zussman, eds.), Manchester Univ. Press, 174-82.Google Scholar
Philpotts, J. A. (1978) Geochim. Cosmochim. Acta, 42, 909-20.CrossRefGoogle Scholar
Shannon, R. D., and Prewitt, C. T. (1969) Acta Crystallogr. B25, 925-46.CrossRefGoogle Scholar
Shewmon, P. G. (1963) Diffusion in Solids. McGraw-Hill, New York.Google Scholar
Smith, J. V. (1974) Feldspar Minerals, vol. 2. Springer, Heidelberg.Google Scholar
Smith, P., and Parsons, I. (1974) Mineral. Mag. 39, 747-67.CrossRefGoogle Scholar
Wood, J. A. (1964) Icarus 3, 429-59.CrossRefGoogle Scholar