Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:43:17.800Z Has data issue: false hasContentIssue false

Tolstykhite, Au3S4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia

Published online by Cambridge University Press:  19 September 2022

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Jakub Plášil
Affiliation:
Institute of Physics of the CAS, Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic
Anna Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
*
*Author for correspondence: Anatoly V. Kasatkin, Email: [email protected]

Abstract

Tolstykhite, ideally Au3S4Te6, is a new mineral from the Gaching ore occurrence of the Maletoyvayam deposit, Kamchatka peninsula, Russia. It occurs as individual anhedral grains up to 0.05 mm or as intergrowths with native Se, native Te and tripuhyite. Other associated minerals include calaverite, fischesserite, Cu–Te-rich ‘fahlores' [stibiogoldfieldite, ‘arsenogoldfieldite', tennantite-(Cu), tetrahedrite-(Zn)], galena, gold, maletoyvayamite, minerals of famatinite–luzonite series, pyrite, baryte, ilmenite, magnetite, quartz and V-bearing rutile. Tolstykhite is bluish-grey, opaque with metallic lustre and grey streak. It is brittle and has an uneven fracture. Cleavage is good on {010} and {001}. Dcalc = 7.347 g/cm3. In reflected light, tolstykhite is grey with a bluish shade. No bireflectance, pleochroism and internal reflections are observed. In crossed polars, it is weakly anisotropic with bluish to brownish rotation tints. The reflectance values for wavelengths recommended by the Commission on Ore Mineralogy of the International Mineralogical Association are (Rmin/Rmax, %): 32.6/34.3 (470 nm), 32.4/34.1 (546 nm), 32.6/34.5 (589 nm) and 33.0/35.0 (650 nm). The Raman spectrum of tolstykhite contains the main bands at 297, 203, 181, 151 and 127 cm–1. The empirical formula calculated on the basis of 13 atoms per formula unit is (Au2.98Ag0.01)Σ2.99(S3.59Se0.41)Σ4.00Te6.01. Tolstykhite is triclinic, space group P$\bar{1}$, a = 8.977(5), b = 9.023(2), c = 9.342(6) Å, α = 94.03(3), β = 110.03(3), γ = 104.27(4)°, V = 679.0(3) Å3 and Z = 2. The strongest lines of the powder X-ray diffraction (XRD) pattern [d, Å (I, %) (hkl)] are: 8.59 (18) (010); 2.90 (100) (0$\bar{1}$3); 2.23 (13) (13$\bar{3}$); 1.89 (21) (13$\bar{4}$). Tolstykhite is the S-analogue of maletoyvayamite, Au3Se4Te6. The structural identity between them is confirmed by powder XRD and Raman spectroscopy. The mineral honours Russian mineralogist Dr. Nadezhda Dmitrievna Tolstykh for her contributions to the mineralogy of gold and platinum-group elements and the study of ore deposits.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Owen Missen

References

Bindi, L. and Pingitore, N.E. (2013) On the symmetry and crystal structure of aguilarite, Ag4SeS. Mineralogical Magazine, 77, 2131.CrossRefGoogle Scholar
Ciesielski, A., Skowronski, L., Trzcinski, M., Górecka, E., Pacuski, W. and Szoplik, T. (2019) Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures. Beilstein Journal of Nanotechnology, 10, 238246.CrossRefGoogle ScholarPubMed
Concepción, Gimeno M. and Laguna, A. (2008) Chalcogenide centred gold complexes. Chemical Society Reviews, 37, 19521966.Google Scholar
Cranton, G.E. and Heyding, R.D. (1968) The gold/selenium system and some gold selenotellurides. Canadian Journal of Chemistry, 46, 26372640.CrossRefGoogle Scholar
Ettema, A.R.H.F., Stegink, T.A. and Haas, C. (1994) The valence of Au in AuTe2 and AuSe studied by x-ray absorption spectroscopy. Solid State Communications, 90, 211213.CrossRefGoogle Scholar
Ishikawa, K., Isonaga, T., Wakita, S. and Suzuki, Y. (1995) Structure and electrical properties of Au2S. Solid State Ionics, 79, 6066.CrossRefGoogle Scholar
Kalinin, K.B., Andreeva, E.D. and Yablokova, D.A. (2012) Textures and structures of Jubilee ore occurrence (Maletoyvayam ore field). Pp. 3948 in: Materials XI Regional youth scientific conference “The Natural Environment of Kamchatka”. Petropavlovsk-Kamchatsky, Russia [in Russian].Google Scholar
Kasatkin, A.V., Nestola, F., Plášil, J., Sejkora, J., Vymazalová, A. and Škoda, R. (2022) Tolstykhite, IMA 2022-007, in: CNMNC Newsletter 67. Mineralogical Magazine, 86, 849853.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley and Sons: New York, USA.Google Scholar
Palyanova, G.A., Tolstykh, N.D., Zinina, V.Yu., Kokh, K.A., Seryotkin, Yu.V. and Bortnikov, N.S. (2019) Synthetic gold chalcogenides in the Au–Te–Se–S system and their natural analogs. Doklady Earth Sciences, 487, 929934 [in Russian].CrossRefGoogle Scholar
Palyanova, G., Mikhlin, Y., Zinina, V., Kokh, K., Seryotkin, Y. and Zhuravkova, T. (2020) New gold chalcogenides in the Au–Te–Se–S system. Journal of Physics and Chemistry of Solids, 138, 109276.CrossRefGoogle Scholar
Palyanova, G., Beliaeva, T., Kokh, K., Seriotkin, Y., Moroz, T. and Tolstykh, N. (2022) Characterization of synthetic and natural gold chalcogenides by electron microprobe analysis, X-ray powder diffraction, and Raman spectroscopic methods. Journal of Raman Spectroscopy, 53, 10121022.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco.Google Scholar
Sejkora, J., Buixaderas, E., Škácha, P. and Plášil, J. (2018) Micro-Raman spectroscopy of natural members along CuSbS2–CuSbSe2 join. Journal of Raman Spectroscopy, 49, 13641372.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Shapovalova, M., Tolstykh, N. and Bobrova, O. (2019) Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conf. Series: Earth and Environmental Science, 319, 012019.Google Scholar
Sidorov, E.G., Borovikov, A.A., Tolstykh, N.D., Bukhanova, D.S., Palyanova, G.A. and Chubarov, V.M. (2020) Gold mineralization at the Maletoyvayam deposit (Koryak Highland, Russia) and physicochemical conditions of its formation. Minerals, 10, 1093.CrossRefGoogle Scholar
Škácha, P., Buixaderas, E., Plášil, J., Sejkora, J., Goliáš, V. and Vlček, V. (2014) Permingeatite, Cu3SbSe4, from Příbram (Czech Republic): Description and Raman spectroscopy investigations of the luzonite-subgroup of minerals. The Canadian Mineralogist, 52, 501511.CrossRefGoogle Scholar
Škácha, P., Sejkora, J. and Plášil, J. (2017) Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic). Minerals, 7, 91.CrossRefGoogle Scholar
Tolstykh, N.D., Orsoev, D.A., Krivenko, A.P. and Izokh, A.E. (2008) Noble Metal Mineralization in Layered Ultramafic-basic Massifs in the South of the Siberian Platform. Parallel Press, Novosibirsk, Russia, 194 pp. [in Russian].Google Scholar
Tolstykh, N., Sidorov, E. and Kozlov, A. (2009) Рlatinum group Minerals from the Olkhovaya-1 placer related to the Кaraginsky ophiolite complex, the Kamchatskiy mys peninsula, Russia. The Canadian Mineralogist, 47, 10571074.CrossRefGoogle Scholar
Tolstykh, N., Vymazalová, A., Tuhý, M. and Shapovalova, M. (2018) Conditions of Au–Se–Te mineralization in the Gaching ore occurence (Maletoyvayam ore field), Kamchatka, Russia. Mineralogical Magazine, 82, 649674.CrossRefGoogle Scholar
Tolstykh, N., Palyanova, G., Bobrova, O. and Sidorov, E. (2019) Mustard gold of the Gaching ore deposit (Maletoyvayam ore Field, Kamchatka, Russia). Minerals, 9, 489.CrossRefGoogle Scholar
Tolstykh, N.D., Tuhý, M., Vymazalová, A., Plášil, J., Laufek, F., Kasatkin, A.V., Nestola, F. and Bobrova, O.V. (2020) Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 84, 117123.CrossRefGoogle Scholar
Tolstykh, N., Bukhanova, D., Shapovalova, M., Borovikov, A. and Podlipsky, M. (2021) The gold mineralization of the Baranyevskoe Au-Ag epithermal deposit in Central Kamchatka. Minerals, 11, 1225.CrossRefGoogle Scholar
Tolstykh, N.D., Tuhý, M., Vymazalová, A., Laufek, F., Plášil, J. and Košek, F. (2022) Gachingite, Au(Te1–xSex) 0.2 ≈ x ≤ 0.5, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 86, 205213.CrossRefGoogle Scholar
Wang, N. (2000) New synthetic ternary chalcogenides. Neues Jahrbuch für Mineralogie, 8, 348356.Google Scholar