Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T05:44:51.108Z Has data issue: false hasContentIssue false

Thermal expansion in C2/c pyroxenes: a review and new high-temperature structural data for a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47)Si2O6 (Jd53Hd47)

Published online by Cambridge University Press:  05 July 2018

M. Tribaudino*
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parco Area delle Scienze 157/A, 43124 Parma, Italy
L. Mantovani
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parco Area delle Scienze 157/A, 43124 Parma, Italy

Abstract

Single-crystal X-ray data collection was performed in situ at T = 300 and 700°C on a sample synthesized along the jadeite–hedenbergite series. The structural data, together with those of a previous investigation of a crystal of the same composition, were compared to those of the endmembers. The evolution of the displacement parameters with temperature shows significant residuals for the O1, O2 and O3 oxygen at T = 0 K, most significantly in the O1, which were interpreted as an indication of positional disorder.

Volume thermal expansion and axial deformation ellipsoids were calculated for the above sample together with those of a series of C2/c pyroxenes. Pyroxenes with a divalent M2 cation, Ca, Fe and Mg have a greater expansion than those with a monovalent M2, like Na and Li; the Na pyroxene endmembers with Al, Cr and Fe were observed to show greater expansion than corresponding Li ones.

The greater axial expansion is found along the b axis, except in LiCrSi2O6; the changes along the b axis are related to the volume thermal expansion. The axial orientation and anisotropy of the two axes onto the (010) plane is different in Na, Li and Ca-Mg-Fe pyroxenes, but the overall expansion onto the (010) plane, given by the sum of the scalar expansion along the two axes on (010), is very similar in pyroxenes.

The deformation along the b axis with temperature and composition is driven by the deformation along b of the octahedral M1 chain; most important is the contribution from the O1−O1 shared edge between M1 octahedra in the same octahedral chain.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benna, P., Tribaudino, M., Zanini, G. and Bruno, E. (1990) The crystal structure of Ca0.8Mg1.2Si2O6 clinopyroxene (Di80En20) at T = –130, 25, 400 and 700°C. Zeitschrift für Kristallographie, 192, 183199.CrossRefGoogle Scholar
Cámara, F., Nestola, F., Angel, R.J. and Ohashi, H. (2009) Spontaneous strain variations through the low-temperature displacive phase transition of LiGaSi2O6 clinopyroxene. European Journal of Mineralogy, 21, 599614.CrossRefGoogle Scholar
Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973) High temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. American Mineralogist, 58, 594618.Google Scholar
Carpenter, M.A., Salje, E.K. and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 10, 621691.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Fei, Y. (1995) Thermal expansion. Pp. 29–44 in: Mineral Physics and Crystallography: a Handbook of Physical Constants (T.J. Ahrens editor), AGU Reference Shelf Vol 2. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
Finger, W. and Ohashi, N.Y. (1976) The thermal expansion of diopside to 800°C and a refinement of the crystal structure at 700°C. American Mineralogist, 61, 303310.Google Scholar
Haselton, H.T. Jr., Hemingway, B.S. and Robie, R.A. (1984) Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene. American Mineralogist, 69, 481489.Google Scholar
Holland, T.J.B. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309343.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, IV. International Union of Crystallography. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Knight, K.S. and Price, G.D. (2008) Powder neutrondiffraction studies of clinopyroxenes. I. The crystal structure and thermoelastic properties of jadeite between 1.5 and 270 K. The Canadian Mineralogist, 46, 15931622.CrossRefGoogle Scholar
Mantovani, L., Tribaudino, M., Mezzadri, F., Calestani, G. and Bromiley, G. (2013) The structure of (Ca,Co)CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca,M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). American Mineralogist, 98, 12411252.CrossRefGoogle Scholar
Nestola, F., Tribaudino, M., Ballaran, T.B., Liebske, C. and Bruno, M. (2007) The crystal structure of pyroxenes along the jadeite–hedenbergite and jadeite–aegirine joins. American Mineralogist, 92, 14921501.CrossRefGoogle Scholar
Nestola, F., Madsen, A., Tribaudino, M., Balić-Žunić, T., Ohashi, H., Secco, L. and Dal Negro, A. (2008) Low-temperature crystal structure evolution of (Na,Ca)(Cr,Mg)Si2O6 pyroxene. Mineralogical Magazine, 72, 809816.CrossRefGoogle Scholar
Ohashi, Y. (1972) A program to calculate the strain tensor. Program listing provided in Hazen and Finger (1982) Comparative Crystal-chemistry. Wiley, New York, USA.Google Scholar
Ohashi, Y. and Burnham, C.W. (1973) Clinopyroxene lattice deformations: the roles of chemical substitution and temperature. American Mineralogist, 58, 843849.Google Scholar
Prencipe, M., Tribaudino, M., Pavese, A., Hoser, A. and Reehuis, M. (2000) A single-crystal neutron-diffraction investigation of diopside at 10 K. The Canadian Mineralogist, 38, 183189.CrossRefGoogle Scholar
Redhammer, G. and Roth, G. (2004) Structural changes upon the temperature dependent C2/c ? P21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me3+ = Cr, Ga, Fe, V, Sc and In. Zeitschrift für Kristallographie, 219, 585605.Google Scholar
Redhammer, G.J., Roth, G., Paulus, W., André, G., Lottermoser, W., Amthauer, G. and Koppelhuber-Bitschnau, B. (2001) The crystal and magnetic structure of Li-aegirine LiFe3+Si2O6: a temperaturedependent study. Physics and Chemistry of Minerals, 28, 337346.CrossRefGoogle Scholar
Redhammer, G.J., Cámara, F. Alvaro, M., Nestola, F., Tippelt, G., Prinz, S. and Amthauer, G. (2010) Thermal expansion and high-temperature P21/c– C2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si,Ge)2O6 . Physics and Chemistry of Minerals, 37, 685704.CrossRefGoogle Scholar
Redhammer, G.J., Senyshyn, A., Tippelt, G. and Roth, G. (2011) Magnetic spin structure of pyroxene-type MnGeO3. Journal of Physics: Condensed Matter, 23, 254202.Google Scholar
Redhammer, G.J., Roth, G., Senyshyn, A., Tippelt, G. and Pietzonka, C. (2013) Crystal and magnetic spin structure of germanium-hedenbergite, CaFeGe2O6 and a comparison with other magnetic/magnetoelectric/ multiferroic pyroxenes. Zeitschrift für Kristallographie, 228, 140150.CrossRefGoogle Scholar
Richet, P., Mysen, B.O. and Ingrin, J. (1998) Hightemperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Physics and Chemistry of Minerals, 26, 401414.CrossRefGoogle Scholar
Rossi, G., Oberti, R., Dal Negro, A., Molin, G.M. and Mellini, M. (1987) Residual electron density at the M2 site in C2/c clinopyroxenes: Relationships with bulk chemistry and sub-solidus evolution. Physics and Chemistry of Minerals, 14, 514520.CrossRefGoogle Scholar
Sheldrick, G.M. (2007) A short history of SHELX. Acta Crystallographica A, 64, 112122.CrossRefGoogle Scholar
Smyth, J.R. (1974) The high-temperature crystal chemistry of clinohypersthene. American Mineralogist, 59, 10691082.Google Scholar
Suzuki, I., Okajima, S. and Seya, K. (1979) Thermal expansion of single-crystal manganosite. Journal of Physics of the Earth, 27, 6369.CrossRefGoogle Scholar
Thompson, R.M., Downs, R.T. and Redhammer, G.J. (2005) Model pyroxenes III: Volume of C2/c pyroxenes at mantle P, T and x. American Mineralogist, 90, 18401851.CrossRefGoogle Scholar
Tribaudino, M. (1996) High-temperature crystal chemistry of C2/c clinopyroxenes along the join CaMgSi2O6–CaAl2SiO6 . European Journal of Mineralogy, 8, 273279.CrossRefGoogle Scholar
Tribaudino, M. and Nestola, F. (2002) Average and local structure in P21/c clinopyroxenes along the join diopside–enstatite (CaMgSi2O6–Mg2Si2O6). European Journal of Mineralogy, 14, 549555.CrossRefGoogle Scholar
Tribaudino, M. and Ohashi, H. (2011) High temperature structure and thermal expansion of Co3Al2Si3O12 garnet. Periodico di Mineralogia, 80, 135144.Google Scholar
Tribaudino, M., Nestola, F., Cámara, F. and Domeneghetti, M.C. (2002) The high temperature P21/c–C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): structural and thermodynamic behavior. American Mineralogist, 87, 648657.CrossRefGoogle Scholar
Tribaudino, M., Nestola, F., Meneghini, C. and Bromiley, G.D. (2003) The high-temperature P21/c–C2/c phase transition in Fe-free Ca-rich P21/c clinopyroxenes. Physics and Chemistry of Minerals, 30, 527535.CrossRefGoogle Scholar
Tribaudino, M., Nestola, F. and Ohashi, H. (2005) High temperature single crystal investigation in a clinopyroxene o f composition (Na0.5Ca0.5) (Cr0.5Mg0.5)Si2O6 . European Journal of Mineralogy, 17, 297304.CrossRefGoogle Scholar
Tribaudino, M., Nestola, F., Bruno, M., Boffa Ballaran, T. and Liebske, C. (2008) Thermal expansion along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 solid solutions. Physics and Chemistry of Minerals, 35, 241248.CrossRefGoogle Scholar
Tribaudino, M., Bromiley, G., Ohashi, H. and Nestola, F. (2009). Synthesis, TEM characterization and thermal behaviour of LiNiSi2O6 pyroxene. Physics and Chemistry of Minerals, 36, 527536.CrossRefGoogle Scholar
Tribaudino, M., Angel, R.J., Cámara, F. Nestola, F., Pasqual, D. and Margiolaki, I. (2010) Thermal expansion of plagioclase feldspars. Contributions to Mineralogy and Petrology, 160, 899908.CrossRefGoogle Scholar
Tribaudino, M., Bruno, M., Nestola, F., Pasqual, D. and Angel, R.J. (2011) Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements. American Mineralogist, 96, 9921002.CrossRefGoogle Scholar
Willis, B.T.M. and Pryor, A.W. (1975) Thermal Vibrations in Crystallography (Vol. 1). Cambridge University Press, Cambridge, UK.Google Scholar
Yang, H. and Prewitt, C.T. (2000) Chain and layer silicates at high temperatures and pressures. Pp 211–255 in: High-Temperature and High-Pressure Crystal Chemistry (R.M. Hazen and R.T. Downs, editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington DC.CrossRefGoogle Scholar