Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T08:41:53.222Z Has data issue: false hasContentIssue false

The thermal expansion behaviour of the framework silicates

Published online by Cambridge University Press:  05 July 2018

D. Taylor*
Affiliation:
Doulton Research Limited, Basil Green Laboratories, Hanworth Lane, Chertsey, Surrey

Summary

This paper gives a revision and expansion of an earlier interpretation of the thermal expansion behaviour of the framework silicates. The partially-collapsed and ideal fully-expanded structures of quartz, cristobalite, and sodalite are characterized by the geometric relationship between the angle of rotation of their tetrahedra from the ideal fully-expanded state, their cell parameters, and the length of the tetrahedron edge. Their thermal expansion behaviour is interpreted as due mainly to the effect of the rotation of the tetrahedra towards the fully-expanded state modified by anisotropic thermal motion of the framework oxygens and distortion of the tetrahedra from a regular form. With the leucite and sodalite groups the significance of the interframework cations is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beger, (R.M.), 1969. Zeits. Krist. 129, 280-302.CrossRefGoogle Scholar
Brown, (G.E.), Gibbs, (G.V.), and Ribbe, (P.H.), 1969. Amer. Min. 54, 1044-61.Google Scholar
Bukin, (V. L) and Makarov, (Ye.S. [E. S.]) 1967. Geoehem. International, 4, 19-28; translated from 1967, 31-40.Google Scholar
Cruickshank, (D. W. J.), 1956. Aeta Cryst. 9, 757-8.CrossRefGoogle Scholar
Cruickshank, (D. W. J.), 1961. Journ. Chem. Soc., 5486-504.CrossRefGoogle Scholar
Dollase, (W.A.), 1965. Zeits. Krist. 369-77.CrossRefGoogle Scholar
Dollase, (W.A.), 1967. Acta. Cryst. 23, 617-23.CrossRefGoogle Scholar
Drechsler, (M.) and Nicholas, (J.E.), 1967. Journ. Phys. Chem. Solids, 28, 2597-607.CrossRefGoogle Scholar
Hahn, (T.) and Buerger, (M.J.), 1955. Zeits. Krist. 106, 308-38.Google Scholar
Jay, (A.H.), 1933. Proe. Roy. Soc., Ser. A, 142, 237.Google Scholar
Johnson, (W.) and Andrews, (K.W.), 1956. Trans. Brit. Ceram. Soc. 55, 227-36.CrossRefGoogle Scholar
Liebau, (F.), 1961. Aeta Cryst. 14, 1103- 9.CrossRefGoogle Scholar
Löns, (VON J.) and Schulz, (H.), 1967. Ibid. 23, 434-6.Google Scholar
Mayer, (G.), 1960, Rappt. Comm. Energie Atomique (France) No. 1330, 101 pp.Google Scholar
Megaw, (H.D.), 1968. Acta Cryst. A24, 589604.CrossRefGoogle Scholar
Megaw, (H.D.), 1970. Ibid. B26, 261-6.Google Scholar
Newnham, (R.E.), 1967. Amer. Min. 52, 1515-18.Google Scholar
Nieuwenkamp, (W.), 1935. Zeits. Krist. 92, 82-8.Google Scholar
Nieuwenkamp, (W.), 1937. Ibid. 96, 454-8.Google Scholar
Pauling, (L.), 1930. Ibid. 74, 213-25.Google Scholar
Peacor, (D.R.), 1968. Zeits. Krist. 127, 213-24.CrossRefGoogle Scholar
Perrotta, (A.J.) and Smith, (J.V.), 1965. Min. Mag. 35, 588-95.Google Scholar
Schulz, (H.) and Saalfeld, (H.), 1965. Tschermaks Min. Petr. Mitt. 10, 225-32.CrossRefGoogle Scholar
Smith, (G.S.) and Alexander, (L.E.), 1963. Acta Cryst. 16, 462-71.CrossRefGoogle Scholar
Smith, (J.V.) and Bailey, (S.W.), 1963. Ibid. 801-11.CrossRefGoogle Scholar
Taylor, (I).), 1968. Min. Mag. 36, 761-9.Google Scholar
Taylor, (I).), and HENDERSON (C. M. B.), 1968. Amer. Min. 53, 1476-89 .Google Scholar
Young, (R.A.), 1962. Defence Documentation Center, Washington, Rep. no. AD 276235, 156 pp.Google Scholar
Young, (R.A.), and Post, (B.), 1962. Acta Crist. 15, 337-46.CrossRefGoogle Scholar