Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:26:09.539Z Has data issue: false hasContentIssue false

Synthetic armalcolite and pseudobrookite

Published online by Cambridge University Press:  05 July 2018

A. Ya. Medvedev*
Affiliation:
Institute of Geochemistry, PB. 4019, 664033 Irkutsk, Russia

Abstract

Armalcolite and pseudobrookite have been crystallized from synthetic melts of basaltic composition with variable amounts of added TiO2. It was found that the composition of the armalcolite and pseudobrookite are dependent on the TiO2 content of the melt and the conditions (particularly oxygen fugacity, but also temperature and quenching rate) of formation. The maximum Al2O3 content of pseudobrookite appears to be ∼14–15 wt.% Al2O3, a spinel-like phase being exsolved at higher Al2O3 concentrations. Generally armalcolite is formed at low pO2 and pseudobrookite at higher oxygen fugacities.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimoto, S., Nagata, T. and Katsura, T. (1957) The TiFe2O5—Ti2FeO5 solid solution series. Nature 179, 37—8.Google Scholar
Akimoto, S., Nishikawa, M., Nakamura, Y., Kushiro, I. and Katsura, T. (1970) Melting experiments of lunar crystalline rocks. Proc. Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. I, 1, 129—33.Google Scholar
Anderson, A.T., Bunch, T.E., Cameron, E.N., Haggerty, S.E., Boyd, F.R., Finger, L.W., James, O.D., Keil, K., Printz, M., Ramdohr, P. and El Goresy, A. (1970) Armalcolite: A new mineral from the Apollo 11 samples. Proc. Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 1, 1, 55—63.Google Scholar
Bowles, J.F.W. (1988) Definition and range of compositions of naturally occurring minerals with the pseudobrookite structure. Amer. Mineral., 73, 1377–83.Google Scholar
Brown, N.E. and Navrotsky, A. (1989) Structural, thermodynamic, and kinematic aspects of disordering in the pseudobrookite-type compound karrooite, MgTi2O5. Amer. Mineral., 74, 902—12.Google Scholar
Friel, J.J. and Harker, R.I. (1977) Armalcolite stability as a function of pressure and oxygen fugacity. Geochim. Cosmochim. Acta, 41, 403–10.CrossRefGoogle Scholar
Lapin, V.V., Kurtzeva, N.N. and Ostrogorskaya, O.P. (1956) The composition of anosovite and of the titanium sesquioxide in titanium-rich slags. Dokl. Akad. Nauk SSSR, 109, 824–7.Google Scholar
Lind, M.D. and Housley, R.M. (1972) Crystallization studies of lunar igneous rocks: Crystal structure o synthetic armalcolite. Science, 175, 521—3.CrossRefGoogle Scholar
Lindsley, D.H., Kesson, S.E., Hartzman, M.J. and Cushman, M.K. (1974) The stability of armalcolite: Experimental studies in the system MgO-Fe-Ti-O. Proc. 5th Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5, 1, 521–34.Google Scholar
Medvedev, A.Ya. (1989) Kennedyite synthesis in high- Ti melts. Mineral Zhurn., 11, 6774.Google Scholar
Medvedev, A.Ya., Almukhamedov, A.I. and Paradina, L.F. (1987) Titanium solubility in the basalt melt (experimental data). Dokl. Akad. Nauk SSSR, 293, 1218–20.Google Scholar
Moore, C.H. Jr. and Sigurdson, H. (1949) Petrology of high titanium slags, Trans. Amer. Inst. Min. Metall. Engs., 185, 914–9.Google Scholar
Rusakov, A.A. and Zhdanov, G.S. (1951) Crystal structure and chemical formula of titanium oxide Ti3O5 (anosovite). Dokl. Akad. Nauk SSSR, 77, 411–4.Google Scholar
Sigurdson, H. and Cole, S.S. (1949) Melting points in the system TiO2-CaO-MgO-Al2O3. Trans. Amer. Inst. Min. Metall. Engs., 185, 905–8.Google Scholar
von Knorring, O. and Cox, K.G. (1961) Kennedyite, a new mineral of the pseudobrookite series. Mineral Mag., 32, 676–82.Google Scholar
Wechsler, B.A. and Navrotsky, A. (1984) Thermodynamic and structural chemistry of compounds in the system MgO-TiO2. J. Solid State Chem., 55, 165-80.CrossRefGoogle Scholar